Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int Forum Allergy Rhinol ; 12(3): 293-301, 2022 03.
Article in English | MEDLINE | ID: mdl-34637187

ABSTRACT

BACKGROUND: It remains unclear whether the metabolic activity of nasal mucus in the olfactory and respiratory areas is different. Moreover, age- and olfaction-related changes may affect metabolism. METHODS: Hexanal, octanal, and 2-methylbutanal were selected for in vitro metabolism analysis and compared between the olfactory cleft and respiratory mucus of participants < 50-year-old with normal olfaction using gas chromatography mass spectrometry. The metabolic activity of hexanal in the olfactory cleft mucus was further compared between three groups, (1) normal olfaction, age < 50 years old, (2) normal olfaction, age ≥50 years old, and (3) idiopathic olfactory impairment. To characterize the enzyme(s) responsible for aldehyde reduction, we also tested if epalr22897estat and 3,5-dichlorosalicylic acid, types of reductase inhibitors, affect metabolism. RESULTS: Conversion of aldehydes to their corresponding alcohols was observed in the olfactory cleft and respiratory mucus. The metabolic production of hexanol, octanol, and 2-methybutanol was significantly higher in the olfactory cleft mucus than in the respiratory mucus (p < 0.01). The metabolic conversion of hexanal to hexanol in the mucus of the idiopathic olfactory impairment group was significantly lower than that in the age-matched normal olfaction group. Excluding the nicotinamide adenine dinucleotide phosphate (NADPH) regenerating system from the reaction mixture inhibited metabolism. The addition of either epalr22897estat or 3,5-dichlorosalicylic acid did not inhibit this metabolic conversion. CONCLUSIONS: The enzymatic metabolism of odorants in the olfactory cleft mucus is markedly higher than in the respiratory mucus and decreases in patients with idiopathic olfactory impairment.


Subject(s)
Odorants , Olfaction Disorders , Healthy Volunteers , Hexanols/metabolism , Humans , Middle Aged , Mucus/metabolism , Odorants/analysis , Olfaction Disorders/metabolism , Smell
2.
Chem Senses ; 44(7): 465-481, 2019 09 07.
Article in English | MEDLINE | ID: mdl-31254383

ABSTRACT

In this study, we examined the mode of metabolism of food odorant molecules in the human nasal/oral cavity in vitro and in vivo. We selected 4 odorants, 2-furfurylthiol (2-FT), hexanal, benzyl acetate, and methyl raspberry ketone, which are potentially important for designing food flavors. In vitro metabolic assays of odorants with saliva/nasal mucus analyzed by gas chromatography mass spectrometry revealed that human saliva and nasal mucus exhibit the following 3 enzymatic activities: (i) methylation of 2-FT into furfuryl methylsulfide (FMS); (ii) reduction of hexanal into hexanol; and (iii) hydrolysis of benzyl acetate into benzyl alcohol. However, (iv) demethylation of methyl raspberry ketone was not observed. Real-time in vivo analysis using proton transfer reaction-mass spectrometry demonstrated that the application of 2-FT and hexanal through 3 different pathways via the nostril or through the mouth generated the metabolites FMS and hexanol within a few seconds. The concentration of FMS and hexanol in the exhaled air was above the perception threshold. A cross-adaptation study based on the activation pattern of human odorant receptors suggested that this metabolism affects odor perception. These results suggest that some odorants in food are metabolized in the human nasal mucus/saliva, and the resulting metabolites are perceived as part of the odor quality of the substrates. Our results help improve the understanding of the mechanism of food odor perception and may enable improved design and development of foods in relation to odor.


Subject(s)
Mouth/metabolism , Nasal Cavity/metabolism , Odorants/analysis , Receptors, Odorant/metabolism , Humans , Nasal Mucosa/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL