Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 120
Filter
1.
PLoS Genet ; 20(6): e1011311, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38848448

ABSTRACT

Long interspersed element 1 (LINE-1; L1) are a family of transposons that occupy ~17% of the human genome. Though a small number of L1 copies remain capable of autonomous transposition, the overwhelming majority of copies are degenerate and immobile. Nevertheless, both mobile and immobile L1s can exert pleiotropic effects (promoting genome instability, inflammation, or cellular senescence) on their hosts, and L1's contributions to aging and aging diseases is an area of active research. However, because of the cell type-specific nature of transposon control, the catalogue of L1 regulators remains incomplete. Here, we employ an eQTL approach leveraging transcriptomic and genomic data from the GEUVADIS and 1000Genomes projects to computationally identify new candidate regulators of L1 RNA levels in lymphoblastoid cell lines. To cement the role of candidate genes in L1 regulation, we experimentally modulate the levels of top candidates in vitro, including IL16, STARD5, HSD17B12, and RNF5, and assess changes in TE family expression by Gene Set Enrichment Analysis (GSEA). Remarkably, we observe subtle but widespread upregulation of TE family expression following IL16 and STARD5 overexpression. Moreover, a short-term 24-hour exposure to recombinant human IL16 was sufficient to transiently induce subtle, but widespread, upregulation of L1 subfamilies. Finally, we find that many L1 expression-associated genetic variants are co-associated with aging traits across genome-wide association study databases. Our results expand the catalogue of genes implicated in L1 RNA control and further suggest that L1-derived RNA contributes to aging processes. Given the ever-increasing availability of paired genomic and transcriptomic data, we anticipate this new approach to be a starting point for more comprehensive computational scans for regulators of transposon RNA levels.


Subject(s)
Long Interspersed Nucleotide Elements , Quantitative Trait Loci , Humans , Long Interspersed Nucleotide Elements/genetics , Genome, Human , Transcriptome/genetics , RNA/genetics , RNA/metabolism , Gene Expression Regulation , Cell Line , Lymphocytes/metabolism
2.
bioRxiv ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38798402

ABSTRACT

Because most DNA-binding transcription factors (dbTFs), including the architectural regulator CTCF, bind RNA and exhibit di-/multimerization, a central conundrum is whether these distinct properties are regulated post-transcriptionally to modulate transcriptional programs. Here, investigating stress-dependent activation of SIRT1, encoding an evolutionarily-conserved protein deacetylase, we show that induced phosphorylation of CTCF acts as a rheostat to permit CTCF occupancy of low-affinity promoter DNA sites to precisely the levels necessary. This CTCF recruitment to the SIRT1 promoter is eliciting a cardioprotective cardiomyocyte transcriptional activation program and provides resilience against the stress of the beating heart in vivo . Mice harboring a mutation in the conserved low-affinity CTCF promoter binding site exhibit an altered, cardiomyocyte-specific transcriptional program and a systolic heart failure phenotype. This transcriptional role for CTCF reveals that a covalent dbTF modification regulating signal-dependent transcription serves as a previously unsuspected component of the oxidative stress response.

3.
bioRxiv ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38798495

ABSTRACT

The human genome contains 24 gag -like capsid genes derived from deactivated retrotransposons conserved among eutherians. Although some of their encoded proteins retain the ability to form capsids and even transfer cargo, their fitness benefit has remained elusive. Here we show that the gag -like genes PNMA1 and PNMA4 support reproductive capacity. Six-week-old mice lacking either Pnma1 or Pnma4 are indistinguishable from wild-type littermates, but by six months the mutant mice become prematurely subfertile, with precipitous drops in sex hormone levels, gonadal atrophy, and abdominal obesity; overall they produce markedly fewer offspring than controls. Analysis of donated human ovaries shows that expression of both genes declines normally with aging, while several PNMA1 and PNMA4 variants identified in genome-wide association studies are causally associated with low testosterone, altered puberty onset, or obesity. These findings expand our understanding of factors that maintain human reproductive health and lend insight into the domestication of retrotransposon-derived genes.

4.
bioRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746475

ABSTRACT

Several decades of heterochronic parabiosis (HCPB) studies have demonstrated the restorative impact of young blood, and deleterious influence of aged blood, on physiological function and homeostasis across tissues, although few of the factors responsible for these observations have been identified. Here we develop an in vitro HCPB system to identify these circulating factors, using replicative lifespan (RLS) of primary human fibroblasts as an endpoint of cellular health. We find that RLS is inversely correlated with serum donor age and sensitive to the presence or absence of specific serum components. Through in vitro HCPB, we identify the secreted protein pigment epithelium-derived factor (PEDF) as a circulating factor that extends RLS of primary human fibroblasts and declines with age in mammals. Systemic administration of PEDF to aged mice reverses age-related functional decline and pathology across several tissues, improving cognitive function and reducing hepatic fibrosis and renal lipid accumulation. Together, our data supports PEDF as a systemic mediator of the effect of young blood on organismal health and homeostasis and establishes our in vitro HCPB system as a valuable screening platform for the identification of candidate circulating factors involved in aging and rejuvenation.

5.
Neuron ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38692279

ABSTRACT

Genome-wide association studies (GWASs) have uncovered over 75 genomic loci associated with risk for late-onset Alzheimer's disease (LOAD), but identification of the underlying causal genes remains challenging. Studies of induced pluripotent stem cell (iPSC)-derived neurons from LOAD patients have demonstrated the existence of neuronal cell-intrinsic functional defects. Here, we searched for genetic contributions to neuronal dysfunction in LOAD using an integrative systems approach that incorporated multi-evidence-based gene mapping and network-analysis-based prioritization. A systematic perturbation screening of candidate risk genes in Caenorhabditis elegans (C. elegans) revealed that neuronal knockdown of the LOAD risk gene orthologs vha-10 (ATP6V1G2), cmd-1 (CALM3), amph-1 (BIN1), ephx-1 (NGEF), and pho-5 (ACP2) alters short-/intermediate-term memory function, the cognitive domain affected earliest during LOAD progression. These results highlight the impact of LOAD risk genes on evolutionarily conserved memory function, as mediated through neuronal endosomal dysfunction, and identify new targets for further mechanistic interrogation.

6.
Chromosome Res ; 31(4): 32, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37910282

ABSTRACT

This review investigates the role of aneuploidy and chromosome instability (CIN) in the aging brain. Aneuploidy refers to an abnormal chromosomal count, deviating from the normal diploid set. It can manifest as either a deficiency or excess of chromosomes. CIN encompasses a broader range of chromosomal alterations, including aneuploidy as well as structural modifications in DNA. We provide an overview of the state-of-the-art methodologies utilized for studying aneuploidy and CIN in non-tumor somatic tissues devoid of clonally expanded populations of aneuploid cells.CIN and aneuploidy, well-established hallmarks of cancer cells, are also associated with the aging process. In non-transformed cells, aneuploidy can contribute to functional impairment and developmental disorders. Despite the importance of understanding the prevalence and specific consequences of aneuploidy and CIN in the aging brain, these aspects remain incompletely understood, emphasizing the need for further scientific investigations.This comprehensive review consolidates the present understanding, addresses discrepancies in the literature, and provides valuable insights for future research efforts.


Subject(s)
Aneuploidy , Neoplasms , Animals , Humans , Chromosomal Instability , Chromosome Aberrations , Brain , Chromosomes , Neoplasms/genetics , Mammals/genetics
7.
Proc Natl Acad Sci U S A ; 120(45): e2313285120, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37922325

ABSTRACT

The resolution limit of chromatin conformation capture methodologies (3Cs) has restrained their application in detection of fine-level chromatin structure mediated by cis-regulatory elements (CREs). Here, we report two 3C-derived methods, Tri-4C and Tri-HiC, which utilize multirestriction enzyme digestions for ultrafine mapping of targeted and genome-wide chromatin interaction, respectively, at up to one hundred basepair resolution. Tri-4C identified CRE loop interaction networks and quantitatively revealed their alterations underlying dynamic gene control. Tri-HiC uncovered global fine-gauge regulatory interaction networks, identifying >20-fold more enhancer:promoter (E:P) loops than in situ Hi-C. In addition to vastly improved identification of subkilobase-sized E:P loops, Tri-HiC also uncovered interaction stripes and contact domain insulation from promoters and enhancers, revealing their loop extrusion behaviors resembling the topologically associating domain boundaries. Tri-4C and Tri-HiC provide robust approaches to achieve the high-resolution interactome maps required for characterizing fine-gauge regulatory chromatin interactions in analysis of development, homeostasis, and disease.


Subject(s)
Chromosomes , Genome , Chromosome Mapping/methods , Genome/genetics , Chromatin/genetics , Regulatory Sequences, Nucleic Acid/genetics
8.
bioRxiv ; 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37645920

ABSTRACT

Long interspersed element 1 (L1) are a family of autonomous, actively mobile transposons that occupy ~17% of the human genome. A number of pleiotropic effects induced by L1 (promoting genome instability, inflammation, or cellular senescence) have been observed, and L1's contributions to aging and aging diseases is an area of active research. However, because of the cell type-specific nature of transposon control, the catalogue of L1 regulators remains incomplete. Here, we employ an eQTL approach leveraging transcriptomic and genomic data from the GEUVADIS and 1000Genomes projects to computationally identify new candidate regulators of L1 RNA levels in lymphoblastoid cell lines. To cement the role of candidate genes in L1 regulation, we experimentally modulate the levels of top candidates in vitro, including IL16, STARD5, HSDB17B12, and RNF5, and assess changes in TE family expression by Gene Set Enrichment Analysis (GSEA). Remarkably, we observe subtle but widespread upregulation of TE family expression following IL16 and STARD5 overexpression. Moreover, a short-term 24-hour exposure to recombinant human IL16 was sufficient to transiently induce subtle, but widespread, upregulation of L1 subfamilies. Finally, we find that many L1 expression-associated genetic variants are co-associated with aging traits across genome-wide association study databases. Our results expand the catalogue of genes implicated in L1 RNA control and further suggest that L1-derived RNA contributes to aging processes. Given the ever-increasing availability of paired genomic and transcriptomic data, we anticipate this new approach to be a starting point for more comprehensive computational scans for transposon transcriptional regulators.

9.
Aging Cell ; 22(10): e13962, 2023 10.
Article in English | MEDLINE | ID: mdl-37605876

ABSTRACT

Genome-wide association studies (GWAS) have pinpointed the chromosomal locus 9p21.3 as a genetic hotspot for various age-related disorders. Common genetic variants in this locus are linked to multiple traits, including coronary artery diseases, cancers, and diabetes. Centenarians are known for their reduced risk and delayed onset of these conditions. To investigate whether this evasion of disease risks involves diminished genetic risks in the 9p21.3 locus, we sequenced this region in an Ashkenazi Jewish centenarian cohort (centenarians: n = 450, healthy controls: n = 500). Risk alleles associated with cancers, glaucoma, CAD, and T2D showed a significant depletion in centenarians. Furthermore, the risk and non-risk genotypes are linked to two distinct low-frequency variant profiles, enriched in controls and centenarians, respectively. Our findings provide evidence that the extreme longevity cohort is associated with collectively lower risks of multiple age-related diseases in the 9p21.3 locus.


Subject(s)
Coronary Artery Disease , Neoplasms , Aged, 80 and over , Humans , Centenarians , Jews/genetics , Genome-Wide Association Study , Longevity/genetics , Coronary Artery Disease/genetics , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease
10.
Aging Cell ; 22(9): e13908, 2023 09.
Article in English | MEDLINE | ID: mdl-37345431

ABSTRACT

Glaucoma is a leading cause of irreversible blindness, with advanced age being the single most significant risk factor. However, the mechanisms underlying the relationship between aging and glaucoma remain unclear. Genome-wide association studies (GWAS) have successfully identified genetic variants strongly associated with increased glaucoma risk. Understanding how these variants function in pathogenesis is crucial for translating genetic associations into molecular mechanisms and, ultimately, clinical applications. The chromosome 9p21.3 locus is among the most replicated glaucoma risk loci discovered by GWAS. Nonetheless, the absence of protein-coding genes in the locus makes interpreting the disease association challenging, leaving the causal variant and molecular mechanism elusive. In this study, we report the identification of a functional glaucoma risk variant, rs6475604. By employing computational and experimental methods, we demonstrated that rs6475604 resides in a repressive regulatory element. Risk allele of rs6475604 disrupts the binding of YY1, a transcription factor known to repress the expression of a neighboring gene in 9p21.3, p16INK4A, which plays a crucial role in cellular senescence and aging. These findings suggest that the glaucoma disease variant contributes to accelerated senescence, providing a molecular link between glaucoma risk and an essential cellular mechanism for human aging.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p16 , Glaucoma , Humans , Cyclin-Dependent Kinase Inhibitor p16/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Glaucoma/genetics , Polymorphism, Single Nucleotide/genetics , Risk Factors , Transcription Factors/genetics
11.
bioRxiv ; 2023 May 20.
Article in English | MEDLINE | ID: mdl-37292828

ABSTRACT

MicroRNAs (miRNAs) have been demonstrated to modulate life span in the invertebrates C. elegans and Drosophila by targeting conserved pathways of aging, such as insulin/IGF-1 signaling (IIS). However, a role for miRNAs in modulating human longevity has not been fully explored. Here we investigated novel roles of miRNAs as a major epigenetic component of exceptional longevity in humans. By profiling the miRNAs in B-cells from Ashkenazi Jewish centenarians and 70-year-old controls without a longevity history, we found that the majority of differentially expressed miRNAs were upregulated in centenarians and predicted to modulate the IIS pathway. Notably, decreased IIS activity was found in B cells from centenarians who harbored these upregulated miRNAs. miR-142-3p, the top upregulated miRNA, was verified to dampen the IIS pathway by targeting multiple genes including GNB2, AKT1S1, RHEB and FURIN . Overexpression of miR-142-3p improved the stress resistance under genotoxicity and induced the impairment of cell cycle progression in IMR90 cells. Furthermore, mice injected with a miR-142-3p mimic showed reduced IIS signaling and improved longevity-associated phenotypes including enhanced stress resistance, improved diet/aging-induced glucose intolerance, and longevity-associated change of metabolic profile. These data suggest that miR-142-3p is involved in human longevity through regulating IIS-mediated pro-longevity effects. This study provides strong support for the use of miR-142-3p as a novel therapeutic to promote longevity or prevent aging/aging-related diseases in human.

12.
bioRxiv ; 2023 May 22.
Article in English | MEDLINE | ID: mdl-37292862

ABSTRACT

Glaucoma is a leading cause of irreversible blindness, with advanced age being the single most significant risk factor. However, the mechanisms underlying the relationship between aging and glaucoma remain unclear. Genome-wide association studies (GWAS) have successfully identified genetic variants strongly associated with increased glaucoma risk. Understanding how these variants function in pathogenesis is crucial for translating genetic associations into molecular mechanisms and, ultimately, clinical applications. The chromosome 9p21.3 locus is among the most replicated glaucoma risk loci discovered by GWAS. Nonetheless, the absence of protein-coding genes in the locus makes interpreting the disease association challenging, leaving the causal variant and molecular mechanism elusive. In this study, we report the identification of a functional glaucoma risk variant, rs6475604. By employing computational and experimental methods, we demonstrated that rs6475604 resides in a repressive regulatory element. Risk allele of rs6475604 disrupts the binding of YY1, a transcription factor known to repress the expression of a neighboring gene in 9p21.3, p16INK4A, which plays a crucial role in cellular senescence and aging. These findings suggest that the glaucoma disease variant contributes to accelerated senescence, providing a molecular link between glaucoma risk and an essential cellular mechanism for human aging.

13.
Geroscience ; 45(5): 2757-2768, 2023 10.
Article in English | MEDLINE | ID: mdl-37191826

ABSTRACT

Rapamycin (sirolimus) is an FDA-approved drug with immune-modulating and growth-inhibitory properties. Preclinical studies have shown that rapamycin extends lifespan and healthspan metrics in yeast, invertebrates, and rodents. Several physicians are now prescribing rapamycin off-label as a preventative therapy to maintain healthspan. Thus far, however, there is limited data available on side effects or efficacy associated with use of rapamycin in this context. To begin to address this gap in knowledge, we collected data from 333 adults with a history of off-label use of rapamycin by survey. Similar data were also collected from 172 adults who had never used rapamycin. Here, we describe the general characteristics of a patient cohort using off-label rapamycin and present initial evidence that rapamycin can be used safely in adults of normal health status.


Subject(s)
Off-Label Use , Sirolimus , Humans , Sirolimus/pharmacology , TOR Serine-Threonine Kinases , Longevity
14.
Sci Rep ; 13(1): 6620, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095155

ABSTRACT

For detecting field carcinogenesis non-invasively, early technical development and case-control testing of exhaled breath condensate microRNAs was performed. In design, human lung tissue microRNA-seq discovery was reconciled with TCGA and published tumor-discriminant microRNAs, yielding a panel of 24 upregulated microRNAs. The airway origin of exhaled microRNAs was topographically "fingerprinted", using paired EBC, upper and lower airway donor sample sets. A clinic-based case-control study (166 NSCLC cases, 185 controls) was interrogated with the microRNA panel by qualitative RT-PCR. Data were analyzed by logistic regression (LR), and by random-forest (RF) models. Feasibility testing of exhaled microRNA detection, including optimized whole EBC extraction, and RT and qualitative PCR method evaluation, was performed. For sensitivity in this low template setting, intercalating dye-based URT-PCR was superior to fluorescent probe-based PCR (TaqMan). In application, adjusted logistic regression models identified exhaled miR-21, 33b, 212 as overall case-control discriminant. RF analysis of combined clinical + microRNA models showed modest added discrimination capacity (1.1-2.5%) beyond clinical models alone: all subjects 1.1% (p = 8.7e-04)); former smokers 2.5% (p = 3.6e-05); early stage 1.2% (p = 9.0e-03), yielding combined ROC AUC ranging from 0.74 to 0.83. We conclude that exhaled microRNAs are qualitatively measureable, reflect in part lower airway signatures; and when further refined/quantitated, can potentially help to improve lung cancer risk assessment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , MicroRNAs , Humans , MicroRNAs/genetics , Case-Control Studies , Lung Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Breath Tests/methods , Exhalation
15.
Trends Mol Med ; 29(7): 530-540, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37121869

ABSTRACT

Genomes are inherently unstable and require constant DNA repair to maintain their genetic information. However, selective pressure has optimized repair mechanisms in somatic cells only to allow transmitting genetic information to the next generation, not to maximize sequence integrity long beyond the reproductive age. Recent studies have confirmed that somatic mutations, due to errors during genome repair and replication, accumulate in tissues and organs of humans and model organisms. Here, we describe recent advances in the quantitative analysis of somatic mutations in vivo. We also review evidence for or against a possible causal role of somatic mutations in aging. Finally, we discuss options to prevent, delay or eliminate de novo, random somatic mutations as a cause of aging.


Subject(s)
Aging , DNA Repair , Humans , Mutation , Aging/genetics , Genome
17.
Geroscience ; 45(1): 311-330, 2023 02.
Article in English | MEDLINE | ID: mdl-35948858

ABSTRACT

Mitochondrial dysfunction is a well-known contributor to aging and age-related diseases. The precise mechanisms through which mitochondria impact human lifespan, however, remain unclear. We hypothesize that humans with exceptional longevity harbor rare variants in nuclear-encoded mitochondrial genes (mitonuclear genes) that confer resistance against age-related mitochondrial dysfunction. Here we report an integrated functional genomics study to identify rare functional variants in ~ 660 mitonuclear candidate genes discovered by target capture sequencing analysis of 496 centenarians and 572 controls of Ashkenazi Jewish descent. We identify and prioritize longevity-associated variants, genes, and mitochondrial pathways that are enriched with rare variants. We provide functional gene variants such as those in MTOR (Y2396Lfs*29), CPS1 (T1406N), and MFN2 (G548*) as well as LRPPRC (S1378G) that is predicted to affect mitochondrial translation. Taken together, our results suggest a functional role for specific mitonuclear genes and pathways in human longevity.


Subject(s)
Genes, Mitochondrial , Longevity , Aged, 80 and over , Humans , Longevity/genetics , Aging/genetics , Mitochondria/metabolism , High-Throughput Nucleotide Sequencing
18.
Front Mol Biosci ; 10: 1308274, 2023.
Article in English | MEDLINE | ID: mdl-38264571

ABSTRACT

Muscle aging is a complex physiological process that leads to the progressive decline in muscle mass and function, contributing to debilitating conditions in the elderly such as sarcopenia. In recent years, non-coding RNAs (ncRNAs) have been increasingly recognized as major regulators of muscle aging and related cellular processes. Here, we comprehensively review the emerging role of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in the regulation of muscle aging. We also discuss how targeting these ncRNAs can be explored for the development of novel interventions to combat age-related muscle decline. The insights provided in this review offer a promising avenue for future research and therapeutic strategies aimed at improving muscle health during aging.

19.
EMBO J ; 41(21): e110393, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36215696

ABSTRACT

Sirtuin 6 (SIRT6) is a deacylase and mono-ADP ribosyl transferase (mADPr) enzyme involved in multiple cellular pathways implicated in aging and metabolism regulation. Targeted sequencing of SIRT6 locus in a population of 450 Ashkenazi Jewish (AJ) centenarians and 550 AJ individuals without a family history of exceptional longevity identified enrichment of a SIRT6 allele containing two linked substitutions (N308K/A313S) in centenarians compared with AJ control individuals. Characterization of this SIRT6 allele (centSIRT6) demonstrated it to be a stronger suppressor of LINE1 retrotransposons, confer enhanced stimulation of DNA double-strand break repair, and more robustly kill cancer cells compared with wild-type SIRT6. Surprisingly, centSIRT6 displayed weaker deacetylase activity, but stronger mADPr activity, over a range of NAD+ concentrations and substrates. Additionally, centSIRT6 displayed a stronger interaction with Lamin A/C (LMNA), which was correlated with enhanced ribosylation of LMNA. Our results suggest that enhanced SIRT6 function contributes to human longevity by improving genome maintenance via increased mADPr activity and enhanced interaction with LMNA.


Subject(s)
Lamin Type A , Sirtuins , Aged, 80 and over , Humans , Centenarians , Alleles , Genomic Instability
20.
Aging Cell ; 21(12): e13724, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36179270

ABSTRACT

Mice bred in 2017 and entered into the C2017 cohort were tested for possible lifespan benefits of (R/S)-1,3-butanediol (BD), captopril (Capt), leucine (Leu), the Nrf2-activating botanical mixture PB125, sulindac, syringaresinol, or the combination of rapamycin and acarbose started at 9 or 16 months of age (RaAc9, RaAc16). In male mice, the combination of Rapa and Aca started at 9 months and led to a longer lifespan than in either of the two prior cohorts of mice treated with Rapa only, suggesting that this drug combination was more potent than either of its components used alone. In females, lifespan in mice receiving both drugs was neither higher nor lower than that seen previously in Rapa only, perhaps reflecting the limited survival benefits seen in prior cohorts of females receiving Aca alone. Capt led to a significant, though small (4% or 5%), increase in female lifespan. Capt also showed some possible benefits in male mice, but the interpretation was complicated by the unusually low survival of controls at one of the three test sites. BD seemed to produce a small (2%) increase in females, but only if the analysis included data from the site with unusually short-lived controls. None of the other 4 tested agents led to any lifespan benefit. The C2017 ITP dataset shows that combinations of anti-aging drugs may have effects that surpass the benefits produced by either drug used alone, and that additional studies of captopril, over a wider range of doses, are likely to be rewarding.


Subject(s)
Acarbose , Sirolimus , Mice , Male , Female , Animals , Acarbose/pharmacology , Sirolimus/pharmacology , Captopril/pharmacology , Longevity , Aging
SELECTION OF CITATIONS
SEARCH DETAIL
...