Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Neoreviews ; 25(3): e139-e150, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38425198

ABSTRACT

The neonatal period is a peak time for the presentation of genetic disorders that can be diagnosed using whole genome sequencing (WGS). While any one genetic disorder is individually rare, they collectively contribute to significant morbidity, mortality, and health-care costs. As the cost of WGS continues to decline and becomes increasingly available, the ordering of rapid WGS for NICU patients with signs or symptoms of an underlying genetic condition is now feasible. However, many neonatal clinicians are not comfortable with the testing, and unfortunately, there is a dearth of geneticists to facilitate testing for every patient that needs it. Here, we will review the science behind WGS, diagnostic capabilities, limitations of testing, time to consider testing, test initiation, interpretation of results, developing a plan of care that incorporates genomic information, and returning WGS results to families.


Subject(s)
Intensive Care Units, Neonatal , Infant, Newborn , Humans , Whole Genome Sequencing/methods
2.
JAMA ; 330(2): 161-169, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37432431

ABSTRACT

Importance: Genomic testing in infancy guides medical decisions and can improve health outcomes. However, it is unclear whether genomic sequencing or a targeted neonatal gene-sequencing test provides comparable molecular diagnostic yields and times to return of results. Objective: To compare outcomes of genomic sequencing with those of a targeted neonatal gene-sequencing test. Design, Setting, and Participants: The Genomic Medicine for Ill Neonates and Infants (GEMINI) study was a prospective, comparative, multicenter study of 400 hospitalized infants younger than 1 year of age (proband) and their parents, when available, suspected of having a genetic disorder. The study was conducted at 6 US hospitals from June 2019 to November 2021. Exposure: Enrolled participants underwent simultaneous testing with genomic sequencing and a targeted neonatal gene-sequencing test. Each laboratory performed an independent interpretation of variants guided by knowledge of the patient's phenotype and returned results to the clinical care team. Change in clinical management, therapies offered, and redirection of care was provided to families based on genetic findings from either platform. Main Outcomes and Measures: Primary end points were molecular diagnostic yield (participants with ≥1 pathogenic variant or variant of unknown significance), time to return of results, and clinical utility (changes in patient care). Results: A molecular diagnostic variant was identified in 51% of participants (n = 204; 297 variants identified with 134 being novel). Molecular diagnostic yield of genomic sequencing was 49% (95% CI, 44%-54%) vs 27% (95% CI, 23%-32%) with the targeted gene-sequencing test. Genomic sequencing did not report 19 variants found by the targeted neonatal gene-sequencing test; the targeted gene-sequencing test did not report 164 variants identified by genomic sequencing as diagnostic. Variants unidentified by the targeted genomic-sequencing test included structural variants longer than 1 kilobase (25.1%) and genes excluded from the test (24.6%) (McNemar odds ratio, 8.6 [95% CI, 5.4-14.7]). Variant interpretation by laboratories differed by 43%. Median time to return of results was 6.1 days for genomic sequencing and 4.2 days for the targeted genomic-sequencing test; for urgent cases (n = 107) the time was 3.3 days for genomic sequencing and 4.0 days for the targeted gene-sequencing test. Changes in clinical care affected 19% of participants, and 76% of clinicians viewed genomic testing as useful or very useful in clinical decision-making, irrespective of a diagnosis. Conclusions and Relevance: The molecular diagnostic yield for genomic sequencing was higher than a targeted neonatal gene-sequencing test, but the time to return of routine results was slower. Interlaboratory variant interpretation contributes to differences in molecular diagnostic yield and may have important consequences for clinical management.


Subject(s)
Genetic Diseases, Inborn , Genetic Testing , Neonatal Screening , Sequence Analysis, DNA , Whole Genome Sequencing , Clinical Decision-Making/methods , Genetic Profile , Genomics , Prospective Studies , Genetic Testing/methods , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Humans , Infant, Newborn , Neonatal Screening/methods , Infant , Sequence Analysis, DNA/methods , Mutation
3.
Genet Med ; 25(10): 100926, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37422715

ABSTRACT

PURPOSE: To describe variation in genomic medicine services across level IV neonatal intensive care units (NICUs) in the United States and Canada. METHODS: We developed and distributed a novel survey to the 43 level IV NICUs belonging to the Children's Hospitals Neonatal Consortium, requesting a single response per site from a clinician with knowledge of the provision of genomic medicine services. RESULTS: Overall response rate was 74% (32/43). Although chromosomal microarray and exome or genome sequencing (ES or GS) were universally available, access was restricted for 22% (7/32) and 81% (26/32) of centers, respectively. The most common restriction on ES or GS was requiring approval by a specialist (41%, 13/32). Rapid ES/GS was available in 69% of NICUs (22/32). Availability of same-day genetics consultative services was limited (41%, 13/32 sites), and pre- and post-test counseling practices varied widely. CONCLUSION: We observed large inter-center variation in genomic medicine services across level IV NICUs: most notably, access to rapid, comprehensive genetic testing in time frames relevant to critical care decision making was limited at many level IV Children's Hospitals Neonatal Consortium NICUs despite a significant burden of genetic disease. Further efforts are needed to improve access to neonatal genomic medicine services.

5.
J Pediatr ; 259: 113489, 2023 08.
Article in English | MEDLINE | ID: mdl-37201679

ABSTRACT

OBJECTIVE: To evaluate the use of drugs with pharmacogenomic (PGx) guidelines from the Clinical Pharmacogenetics Implementation Consortium in early childhood. STUDY DESIGN: A retrospective observational study of patients admitted to the neonatal intensive care (NICU) between 2005 and 2018 with at least 1 subsequent hospitalization at or after 5 years of age was performed to determine PGx drug exposure. Data regarding hospitalizations, drug exposures, gestational age, birth weight, and congenital anomalies and/or a primary genetic diagnosis were collected. Incidence of PGx drug and drug class exposures was determined and patient specific factors predictive of exposure were investigated. RESULTS: During the study, 19 195 patients received NICU care and 4196 (22%) met study inclusion; 67% received 1-2, 28% 3-4, and 5% 5 or more PGx-drugs in early childhood. Preterm gestation, low birth weight (<2500 g), and the presence of any congenital anomalies and/or a primary genetic diagnosis were statistically significant predictors of Clinical Pharmacogenetics Implementation Consortium drug exposures (P < .01, P < .01, P < .01, respectively). CONCLUSIONS: Preemptive PGx testing in patients in the NICU could have a significant impact on medical management during the NICU stay and throughout early childhood.


Subject(s)
Intensive Care Units, Neonatal , Pharmacogenetics , Child, Preschool , Infant, Newborn , Humans , Genotype , Intensive Care, Neonatal , Infant, Low Birth Weight
6.
Cureus ; 15(2): e34779, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36909054

ABSTRACT

Objective Esophageal atresia with or without tracheoesophageal fistula (EA/TEF) has a reported incidence of 1 in 3500 live births and requires intensive care and surgery. To evaluate the prevalence of a molecularly confirmed genetic etiology of EA/TEF in a level IV neonatal intensive care unit (NICU), focusing on genetic evaluation, diagnostic yield, and clinical outcomes of these neonates. Study design A retrospective cohort study over a period of seven years was performed for all patients admitted with a diagnosis of EA/TEF. Automated data was extracted for demographic information and manual extraction was done to evaluate the frequency of associated anomalies, type of genetic evaluations and diagnoses, and outcomes at NICU discharge. Results Sixty-eight infants met the inclusion criteria. The majority were male (n=42; 62%), born at >37 weeks' gestation (n=36; 53%), and had EA with distal TEF (n=54; 79%). Most (n=53; 78%) had additional associated congenital anomalies, but only 47 (69%) patients had a genetics evaluation performed and genetic testing was sent for 44 (65%) of those patients. The most common genetic testing performed was chromosomal microarray analysis (n=40; 59%), followed by chromosome analysis (n=11; 16%), and whole exome/genome sequencing (n=7; 10%). Five unique genetic diagnoses including CHARGE Syndrome, Fanconi Syndrome, EFTUD2-related mandibulofacial dysostosis, and two different chromosomal deletion syndromes were made for a total of nine (13%) patients in our cohort. The cohort suffered a high rate of morbidity and mortality during their NICU stay with important differences noted in isolated vs non-isolated EA/TEF. Twelve infants (18%) died prior to NICU discharge. Of those surviving, 40 (71%) infants had a primary repair, 37 (66%) infants required G or GJ feedings at NICU discharge, and eight (14%) patients were discharged on some type of respiratory support. Conclusion In this high-risk cohort of EA/TEF patients cared for at a quaternary NICU, a majority were non-isolated and had some form of a genetic evaluation, but a minority underwent exome or genome sequencing. Given the high prevalence of associated anomalies, high mortality, and genetic disease prevalence in this cohort, we recommend standardization of phenotyping and genetic evaluation to allow for precision care and appropriate risk stratification.

7.
Pediatrics ; 151(3)2023 03 01.
Article in English | MEDLINE | ID: mdl-36762410

ABSTRACT

OBJECTIVE: The authors of this study aimed to evaluate the use of polysomnography (PSG) in children with Down syndrome (DS) between ages 0 and 7 years, to assess the prevalence and severity of obstructive sleep apnea (OSA) and associated comorbidities, and to describe interventions used for OSA. METHODS: A retrospective cohort study was performed at Cincinnati Children's Hospital Medical Center for children with DS born between 2013 and 2019. Data were extracted from the electronic medical record, including demographics, age at PSG, PSG results, and interventions after an abnormal PSG. Statistical analysis included unadjusted bivariate association testing and multivariable logistic regression modeling to investigate associations with OSA severity. RESULTS: Among 397 patients in the cohort, 59% (n = 235) had a documented PSG and 94% (n = 221) had an abnormal study with 60% (n = 141) demonstrating moderate or severe OSA. There was an inverse relationship between age and OSA severity (P < .001). In a multiple regression model, OSA severity was associated with increased rates of failure to thrive (P < .01), aspiration (P = .02), and laryngomalacia (P < .01). After medical or surgical intervention, 73% of patients experienced the resolution of OSA or an improvement in OSA severity. CONCLUSION: In this study of pediatric patients with DS, OSA was identified most frequently in the first year of life. In addition, to prompt evaluation of symptomatic infants, our data support earlier PSG screening for patients requiring neonatal ICU care and those with feeding difficulties, airway abnormalities, and/or pulmonary hypertension given their increased risk for severe OSA.


Subject(s)
Down Syndrome , Sleep Apnea, Obstructive , Infant , Infant, Newborn , Child , Humans , Child, Preschool , Retrospective Studies , Down Syndrome/complications , Down Syndrome/epidemiology , Sleep Apnea, Obstructive/complications , Sleep Apnea, Obstructive/diagnosis , Sleep Apnea, Obstructive/epidemiology , Polysomnography/adverse effects , Comorbidity
8.
Am J Med Genet A ; 191(4): 930-940, 2023 04.
Article in English | MEDLINE | ID: mdl-36651673

ABSTRACT

Increasing use of unbiased genomic sequencing in critically ill infants can expand understanding of rare diseases such as Kabuki syndrome (KS). Infants diagnosed with KS through genome-wide sequencing performed during the initial hospitalization underwent retrospective review of medical records. Human phenotype ontology terms used in genomic analysis were aggregated and analyzed. Clinicians were surveyed regarding changes in management and other care changes. Fifteen infants met inclusion criteria. KS was not suspected prior to genomic sequencing. Variants were classified as Pathogenic (n = 10) or Likely Pathogenic (n = 5) by American College of Medical Genetics and Genomics Guidelines. Fourteen variants were de novo (KMT2D, n = 12, KDM6A, n = 2). One infant inherited a likely pathogenic variant in KMT2D from an affected father. Frequent findings involved cardiovascular (14/15) and renal (7/15) systems, with palatal defects also identified (6/15). Three infants had non-immune hydrops. No minor anomalies were universally documented; ear anomalies, micrognathia, redundant nuchal skin, and hypoplastic nails were common. Changes in management were reported in 14 infants. Early use of unbiased genome-wide sequencing enabled a molecular diagnosis prior to clinical recognition including infants with atypical or rarely reported features of KS while also expanding the phenotypic spectrum of this rare disorder.


Subject(s)
Abnormalities, Multiple , Hematologic Diseases , Vestibular Diseases , Pregnancy , Female , Humans , Infant , Abnormalities, Multiple/genetics , Face/abnormalities , Hematologic Diseases/genetics , Vestibular Diseases/genetics , Phenotype , Histone Demethylases/genetics
9.
Article in English | MEDLINE | ID: mdl-36442996

ABSTRACT

Biallelic pathogenic variants in DYNC2H1 are the cause of short-rib thoracic dysplasia type III with or without polydactyly (OMIM #613091), a skeletal ciliopathy characterized by thoracic hypoplasia due to short ribs. In this report, we review the case of a patient who was admitted to the Neonatal Intensive Care Unit (NICU) of Indiana University Health (IUH) for respiratory support after experiencing respiratory distress secondary to a small, narrow chest causing restrictive lung disease. Additional phenotypic features include postaxial polydactyly, short proximal long bones, and ambiguous genitalia were noted. Exome sequencing (ES) revealed a maternally inherited likely pathogenic variant c.10322C > T p.(Leu3448Pro) in the DYNC2H1 gene. However, there was no variant found on the paternal allele. Microarray analysis to detect deletion or duplication in DYNC2H1 was normal. Therefore, there was insufficient evidence to establish a molecular diagnosis. To further explore the data and perform additional investigations, the patient was subsequently enrolled in the Undiagnosed Rare Disease Clinic (URDC) at Indiana University School of Medicine (IUSM). The investigators at the URDC performed a reanalysis of the ES raw data, which revealed a paternally inherited DYNC2H1 deep-intronic variant c.10606-14A > G predicted to create a strong cryptic acceptor splice site. Additionally, the RNA sequencing of fibroblasts demonstrated partial intron retention predicted to cause a premature stop codon and nonsense-mediated mRNA decay (NMD). Droplet digital RT-PCR (RT-ddPCR) showed a drastic reduction by 74% of DYNCH2H1 mRNA levels. As a result, the intronic variant was subsequently reclassified as likely pathogenic resulting in a definitive clinical and genetic diagnosis for this patient. Reanalysis of ES and fibroblast mRNA experiments confirmed the pathogenicity of the splicing variants to supplement critical information not revealed in original ES or CMA reports. The NICU and URDC collaboration ended the diagnostic odyssey for this family; furthermore, its importance is emphasized by the possibility of prenatally diagnosing the mother's current pregnancy.


Subject(s)
Polydactyly , Short Rib-Polydactyly Syndrome , Female , Humans , Infant, Newborn , Pregnancy , Cytoplasmic Dyneins/genetics , Exome Sequencing , Mutation , Ribs , RNA, Messenger , Short Rib-Polydactyly Syndrome/diagnosis , Short Rib-Polydactyly Syndrome/genetics
11.
J Perinatol ; 42(5): 580-588, 2022 05.
Article in English | MEDLINE | ID: mdl-35181764

ABSTRACT

OBJECTIVE: To determine detection rates of genetic disease in a level IV neonatal intensive care unit (NICU) and cost of care. STUDY DESIGN: We divided 2703 neonates, admitted between 2013 and 2016 to a level IV NICU, into two epochs and determined how genetic testing utilization, genetic diagnoses identified, and cost of NICU care changed over time. RESULT: The increasing use of multi-gene panels 104 vs 184 (P = 0.02) and whole exome sequencing (WES) 9 vs 28 (P = 0.03) improved detection of genetic disease, 9% vs 12% (P < 0.01). Individuals with genetic diagnoses had higher mean NICU charges, $723,422 vs $417,013 (P < 0.01) secondary to longer lengths of stay, not genetic services. CONCLUSION: The increased utilization of broad genetic testing improved the detection of genetic disease but contributed minimally to the cost of care while bolstering understanding of the patient's condition and prognosis.


Subject(s)
Genetic Testing , Intensive Care Units, Neonatal , Hospitalization , Humans , Infant, Newborn , Exome Sequencing
12.
Mol Genet Genomic Med ; 9(10): e1804, 2021 10.
Article in English | MEDLINE | ID: mdl-34528764

ABSTRACT

BACKGROUND: Defects in the RYR1 (OMIM#180901) gene lead to Ryanodine receptor type 1-related myopathies (RYR1-RM); the most common subgroup of congenital myopathies. METHODS: Congenital myopathy presents a diagnostic challenge due to the need for multiple testing modalities to identify the many different genetic etiologies. In this case, the patient remained undiagnosed after whole-exome sequencing (WES), chromosomal microarray, methylation analysis, targeted deletion and duplication studies, and targeted repeat expansion studies. Clinical whole-genome sequencing (WGS) was then pursued as part of a research study to identify a diagnosis. RESULTS: WGS identified compound heterozygous RYR1 intronic variants, RNA sequencing confirmed both variants to be pathogenic causing RYR1-RM in a phenotype of severe congenital hypotonia with respiratory failure from birth, neonatal brain hemorrhage, and congenital heart disease involving transposition of the great arteries. CONCLUSION: While there is an ongoing debate about the clinical superiority of WGS versus WES for patients with a suspected genetic condition, this scenario highlights a weakness of WES as well as the added cost and delay in diagnosis timing with having WGS follow WES or even ending further genetic testing with a negative WES. While knowledge gaps still exist for many intronic variants, transcriptome analysis provides a way of validating the resulting dysfunction caused by these variants and thus allowing for appropriate pathogenicity classification. This is the second published case report of a patient with pathogenic intronic variants in RYR1-RM, with clinical RNA testing confirming variant pathogenicity and therefore the diagnosis suggesting that for some patients careful analysis of a patient's genome and transcriptome are required for a complete genetic evaluation. The diagnostic odyssey experienced by this patient highlights the importance of early, rapid WGS.


Subject(s)
Heterozygote , Intracranial Hemorrhages/genetics , Introns , Mutation , Myotonia Congenita/genetics , Respiratory Insufficiency/genetics , Ryanodine Receptor Calcium Release Channel/genetics , Transposition of Great Vessels/genetics , Biopsy , Echocardiography , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Testing , Humans , Infant, Newborn , Intracranial Hemorrhages/diagnosis , Magnetic Resonance Imaging , Male , Myotonia Congenita/diagnosis , Respiratory Insufficiency/diagnosis , Transposition of Great Vessels/diagnosis , Whole Genome Sequencing
13.
JAMA Pediatr ; 175(5): e205906, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33587123

ABSTRACT

Importance: A targeted genomic sequencing platform focused on diseases presenting in the first year of life may minimize financial and ethical challenges associated with rapid whole-genomic sequencing. Objective: To report interim variants and associated interpretations of an ongoing study comparing rapid whole-genomic sequencing with a novel targeted genomic platform composed of 1722 actionable genes targeting disorders presenting in infancy. Design, Setting, and Participants: The Genomic Medicine in Ill Neonates and Infants (GEMINI) study is a prospective, multicenter clinical trial with projected enrollment of 400 patients. The study is being conducted at 6 US hospitals. Hospitalized infants younger than 1 year of age suspected of having a genetic disorder are eligible. Results of the first 113 patients enrolled are reported here. Patient recruitment began in July 2019, and the interim analysis of enrolled patients occurred from March to June 2020. Interventions: Patient (proband) and parents (trios, when available) were tested simultaneously on both genomic platforms. Each laboratory performed its own phenotypically driven interpretation and was blinded to other results. Main Outcomes and Measures: Variants were classified according to the American College of Medical Genetics and Genomics standards of pathogenic (P), likely pathogenic (LP), or variants of unknown significance (VUS). Chromosomal and structural variations were reported by rapid whole-genomic sequencing. Results: Gestational age of 113 patients ranged from 23 to 40 weeks and postmenstrual age from 27 to 83 weeks. Sixty-seven patients (59%) were male. Diagnostic and/or VUS were returned for 51 patients (45%), while 62 (55%) had negative results. Results were concordant between platforms in 83 patients (73%). Thirty-seven patients (33%) were found to have a P/LP variant by 2 or both platforms and 14 (12%) had a VUS possibly related to phenotype. The median day of life at diagnosis was 22 days (range, 3-313 days). Significant alterations in clinical care occurred in 29 infants (78%) with a P/LP variant. Incidental findings were reported in 7 trios. Of 51 positive cases, 34 (67%) differed in the reported result because of technical limitations of the targeted platform, interpretation of the variant, filtering discrepancies, or multiple causes. Conclusions and Relevance: As comprehensive genetic testing becomes more routine, these data highlight the critically important variant detection capabilities of existing genomic sequencing technologies and the significant limitations that must be better understood.


Subject(s)
Genetic Diseases, Inborn/diagnosis , Genetic Testing/methods , Genetic Variation , Whole Genome Sequencing , Female , Genomic Medicine , Humans , Infant , Infant, Newborn , Male , Prospective Studies , United States
14.
Am J Med Genet A ; 185(2): 336-343, 2021 02.
Article in English | MEDLINE | ID: mdl-33128508

ABSTRACT

Limited knowledge exists about how frequently newborns with Down syndrome receive a prenatal diagnosis, require intensive care, and what surgical and medical factors are contributory. A retrospective cohort study was performed for patients with a diagnosis of Down syndrome born in 2013 and 2014 who sought care at Cincinnati Children's Hospital Medical Center during the first year of life. Data were extracted from the electronic medical record through the first year of life including need for intensive care as a newborn, prenatal diagnosis, and medical and surgical complications. Of the 129 patients in the study, 65% required intensive care as newborns. The presence of a structural abnormality that required surgical correction in the neonatal period and certain types of congenital heart disease not requiring surgical intervention in the neonatal period were positively associated with the need for intensive care. A minority of infants, 8%, had a confirmed prenatal diagnosis. A majority of newborns with Down syndrome required intensive care following birth while a minority had any concern for the diagnosis prenatally. Improving prenatal diagnostic rates would allow for better prenatal counseling and delivery planning, while targeting therapeutic interventions for this population is needed to improve outcomes.


Subject(s)
Down Syndrome/therapy , Heart Defects, Congenital/therapy , Intensive Care, Neonatal , Prenatal Diagnosis , Child , Down Syndrome/complications , Down Syndrome/genetics , Down Syndrome/physiopathology , Female , Heart Defects, Congenital/complications , Heart Defects, Congenital/genetics , Heart Defects, Congenital/physiopathology , Humans , Infant , Infant, Newborn , Male , Pregnancy , Risk Factors
15.
Mol Genet Genomic Med ; 8(6): e1230, 2020 06.
Article in English | MEDLINE | ID: mdl-32275126

ABSTRACT

BACKGROUND: Autism spectrum disorder (ASD) affects approximately one in 59 children. Variants in the activity-dependent neuroprotector homeobox ADNP (OMIM #611386) gene may be one of the most common single-gene causes of syndromic ASD. Most patients diagnosed with ADNP syndrome have ASD as a comorbidity, and all patients have mild-to-severe intellectual disability. METHODS/CASE REPORT: We present a case report of a patient diagnosed with ADNP syndrome at 2.5 years of age. The patient has many of the key features of the syndrome, including ASD, global developmental delay, behavioral problems, congenital heart defect, early tooth eruption, and vision problems. The patient's initial presentation included congenital diaphragmatic hernia (CDH), which has not been previously reported in this condition. RESULTS: The patient exhibited frequent behavioral outbursts and was initiated on antipsychotic medication with near-complete resolution of symptoms allowing her to engage more fully in early intervention therapies leading to progress in language acquisition. CONCLUSION: This short report provides guidance for antipsychotic medication dosing to improve early intervention outcomes. This is the first report of CDH in this syndrome.


Subject(s)
Autism Spectrum Disorder/drug therapy , Behavioral Symptoms/drug therapy , Early Medical Intervention , Hernias, Diaphragmatic, Congenital/drug therapy , Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , Antipsychotic Agents/administration & dosage , Antipsychotic Agents/therapeutic use , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/pathology , Behavioral Symptoms/genetics , Behavioral Symptoms/pathology , Child, Preschool , Female , Hernias, Diaphragmatic, Congenital/genetics , Hernias, Diaphragmatic, Congenital/pathology , Humans , Risperidone/administration & dosage , Risperidone/therapeutic use , Syndrome
16.
J Pediatr ; 213: 211-217.e4, 2019 10.
Article in English | MEDLINE | ID: mdl-31255390

ABSTRACT

OBJECTIVE: To investigate the prevalence of genetic disease and its economic impact in a level IV neonatal intensive care unit (NICU) by identifying and describing diseases diagnosed, genetic testing methodologies used, timing of diagnosis, length of NICU stay, and charges for NICU care. STUDY DESIGN: A retrospective chart review of patients admitted to a level IV NICU from 2013 to 2014 (n = 1327) was undertaken and data collected up to 2 years of age from the electronic medical record. RESULTS: In total, 117 patients (9%) received 120 genetic diagnoses using a variety of methodologies. A significant minority of diagnoses, 36%, were made after NICU discharge and 41% were made after 28 days of age. Patients receiving a genetic diagnosis had significantly longer mean lengths of stay (46 days vs 29.1 days; P < .01) and costlier mean charges ($598 712 vs $352 102; P < .01) for their NICU care. The NICU stay charge difference to care for a newborn with a genetic condition was on average $246 610 in excess of that for a patient without a genetic diagnosis, resulting in more than $28 000 000 in excess charges to care for all patients with genetic conditions in a single NICU over a 2-year period. CONCLUSIONS: Given the high prevalence of genetic disease in this population and the documented higher cost of care, shortening the time to diagnosis and targeting therapeutic interventions for this population could make a significant impact on neonatal care in level IV NICUs.


Subject(s)
Genetic Diseases, Inborn/economics , Genetic Diseases, Inborn/genetics , Genetic Testing/economics , Genetic Testing/methods , Intensive Care Units, Neonatal , Intensive Care, Neonatal/economics , DNA Methylation , Electronic Health Records , Exome , Female , Genetic Diseases, Inborn/diagnosis , Humans , In Situ Hybridization, Fluorescence , Infant , Infant Mortality , Infant, Newborn , Length of Stay , Male , Oligonucleotide Array Sequence Analysis , Patient Discharge , Prevalence , Retrospective Studies , Sequence Analysis, DNA
17.
J Pediatr ; 206: 286-292.e1, 2019 03.
Article in English | MEDLINE | ID: mdl-30413314

ABSTRACT

Variable lung disease was documented in 2 infants with heterozygous TBX4 mutations; their clinical presentations, pathology, and outcomes were distinct. These findings demonstrate that TBX4 gene mutations are associated with neonatal respiratory failure and highlight the wide spectrum of clinicopathological outcomes that have implications for patient diagnosis and management.


Subject(s)
Mutation/genetics , Respiratory Insufficiency/genetics , Respiratory Insufficiency/pathology , T-Box Domain Proteins/genetics , Female , Humans , Infant, Newborn , Male
18.
J Biol Chem ; 289(15): 10668-10679, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24591516

ABSTRACT

Long-chain acyl-CoA dehydrogenase (LCAD) is a mitochondrial fatty acid oxidation enzyme whose expression in humans is low or absent in organs known to utilize fatty acids for energy such as heart, muscle, and liver. This study demonstrates localization of LCAD to human alveolar type II pneumocytes, which synthesize and secrete pulmonary surfactant. The physiological role of LCAD and the fatty acid oxidation pathway in lung was subsequently studied using LCAD knock-out mice. Lung fatty acid oxidation was reduced in LCAD(-/-) mice. LCAD(-/-) mice demonstrated reduced pulmonary compliance, but histological examination of lung tissue revealed no obvious signs of inflammation or pathology. The changes in lung mechanics were found to be due to pulmonary surfactant dysfunction. Large aggregate surfactant isolated from LCAD(-/-) mouse lavage fluid had significantly reduced phospholipid content as well as alterations in the acyl chain composition of phosphatidylcholine and phosphatidylglycerol. LCAD(-/-) surfactant demonstrated functional abnormalities when subjected to dynamic compression-expansion cycling on a constrained drop surfactometer. Serum albumin, which has been shown to degrade and inactivate pulmonary surfactant, was significantly increased in LCAD(-/-) lavage fluid, suggesting increased epithelial permeability. Finally, we identified two cases of sudden unexplained infant death where no lung LCAD antigen was detectable. Both infants were homozygous for an amino acid changing polymorphism (K333Q). These findings for the first time identify the fatty acid oxidation pathway and LCAD in particular as factors contributing to the pathophysiology of pulmonary disease.


Subject(s)
Acyl-CoA Dehydrogenase, Long-Chain/deficiency , Lipid Metabolism, Inborn Errors/metabolism , Lung Diseases/etiology , Pulmonary Surfactants/metabolism , Acyl-CoA Dehydrogenase, Long-Chain/metabolism , Adult , Animals , Bronchi/metabolism , Cell Line, Tumor , Coenzyme A/metabolism , Disease Models, Animal , Epithelial Cells/metabolism , Fatty Acids/metabolism , Female , Homozygote , Humans , Infant , Infant, Newborn , Lung/metabolism , Lung Diseases/metabolism , Lung Neoplasms/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oxygen/metabolism , Phosphatidylcholines/chemistry , Phosphatidylglycerols/chemistry , Polymorphism, Genetic , Pulmonary Alveoli/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...