Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters











Publication year range
1.
Bioresour Technol ; 407: 131111, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39009048

ABSTRACT

Rare earth elements result in substantial tailings wastewater with high ammonium and nitrate during extraction. In this study, a temperature-resilient Anammox process was employed for efficient treatment of rare earth element tailings wastewater through implementing synergistic nitrite supply by partial nitritation (PN) and partial denitrification (PD). Enhancing temperature resilience of Anammox process relies on dynamic management of DO and COD inputs to shift the dominant nitrite supplier from PN to PD, stable PD (NAR ≥ 90 %) can boost nitrogen removal by Anammox to 97.8 %. The nitrogen removal rate and nitrogen removal efficiency at 10.6 °C could maintain at 0.12 kgN/m3·d-1 and 92.5 %, respectively. Microbial analysis reveals that Nitrosomonas, Thauera, and Candidatus_Kuenenia are the predominant genera responsible for nitrite supply and nitrogen removal, localized within the gas channels of granules, flocs, and micro-granules, respectively. Keeping the influent C/NO3--N ratio below 1.7 is ideal to prevent overgrowth of Thauera and maintain system stability.


Subject(s)
Denitrification , Nitrites , Temperature , Wastewater , Nitrites/metabolism , Wastewater/chemistry , Metals, Rare Earth/metabolism , Nitrogen/metabolism , Water Purification/methods , Bioreactors , Oxidation-Reduction , Anaerobiosis
2.
Membranes (Basel) ; 14(6)2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38921509

ABSTRACT

The extensive application of ceramic membranes in wastewater treatment draws increasing attention due to their ultra-long service life. A cost-effective treatment for high-strength swine wastewater is an urgent and current need that is a worldwide challenge. A pilot-scale sequencing batch flat-sheet ceramic membrane bioreactor (ScMBR) coupled with a short-cut biological nitrogen removal (SBNR) process was developed to treat high-strength swine wastewater. The ScMBR achieved stable and excellent removal of COD (95.3%), NH4+-N (98.3%), and TN (92.7%), though temperature went down from 20 °C, to 15 °C, to 10 °C stepwise along three operational phases. The COD and NH4+-N concentrations in the effluent met with the discharge standards (GB18596-2001). Microbial community diversity was high, and the genera Pseudomonas and Comamonas were dominant in denitritation, and Nitrosomonas was dominant in nitritation. Ceramic membrane modules of this pilot-scale reactor were separated into six layers (A, B, C, D, E, F) from top to bottom. The total filtration resistance of both the top and bottom membrane modules was relatively low, and the resistance of the middle ones was high. These results indicate that the spatial distribution of the membrane fouling degree was different, related to different aeration scour intensities demonstrated by computational fluid dynamics (CFD). The results prove that the membrane fouling mechanism can be attributed to the cake layer formation of the middle modules and pore blocking of the top and bottom modules, which mainly consist of protein and carbohydrates. Therefore, different cleaning measures should be adopted for membrane modules in different positions. In this study, the efficient treatment of swine wastewater shows that the ScMBR system could be applied to high-strength wastewater. Furthermore, the spatial distribution characteristics of membrane fouling contribute to cleaning strategy formulation for further full-scale MBR applications.

3.
Sci Total Environ ; 933: 173302, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38759923

ABSTRACT

Carbon metabolism and nutrient removal are crucial for biological wastewater treatment. This study focuses on analyzing carbon allocation and utilization by heterotrophic bacteria in response to increasing COD concentration in the influent. The study also assesses the effect of denitrification and biological phosphorus removal, particularly in combination with anaerobic ammonia oxidation (anammox). The experiment was conducted in a SBR operating under anaerobic/anoxic/oxic conditions. As COD concentration in the influent increased from 100 to 275 mg/L, intracellular COD accounted for 95.72 % of the COD removed. By regulating the NO3- concentration in the anoxic stage from 10 to 30 mg/L, the nitrite accumulation rate reached 69.46 %, which could serve as an electron acceptor for anammox. Most genes related to the tricarboxylic acid (TCA) cycle declined, while the genes involved in the glyoxylate cycle, gluconeogenesis, PHA synthesis increased. This suggests that glycogen accumulation and carbon storage, rather than direct carbon oxidation, was the dominant pathway for carbon metabolism. However, the genes responsible for the reduction of NO2--N (nirK) and NO (nosB) decreased, contributing to NO2- accumulation. The study also employed metagenomic analysis to reveal microbial interactions. The enrichment of specific bacterial species, including Dechloromonas sp. (D2.bin.10), Ca. Competibacteraceae bacterium (D9.bin.8), Ca. Desulfobacillus denitrificans (D6.bin.17), and Ignavibacteriae bacterium (D3.bin.9), played a collaborative role in facilitating nutrient removal and promoting the combination with anammox.


Subject(s)
Bacteria , Carbon , Nitrogen , Phosphorus , Waste Disposal, Fluid , Phosphorus/metabolism , Carbon/metabolism , Bacteria/metabolism , Waste Disposal, Fluid/methods , Nitrogen/metabolism , Denitrification , Wastewater/microbiology , Heterotrophic Processes , Bioreactors/microbiology
4.
Bioresour Technol ; 388: 129730, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37704089

ABSTRACT

To address the issue of floating and loss of floc sludge caused by gas production in anaerobic ammonia oxidation (anammox) reactors, this study proposes a limited nitrite supply strategy to regulate gas production during the settling and enhance sludge retention. Results indicate that the effluent suspended solids in the anammox reactor can be reduced to as low as 0.11 g/L under specific feast-starvation conditions. Even under long-term intermittent nitrite-starvation stress, the maximum growth rate of Candidatus_Kuenenia can still reach 0.085d-1, with its abundance increasing from 0.47% to 8.83% within 69 days. Although the combined effects of starvation and sedimentation would lead to a temporary decrease in anammox activity, this reversible inhibition can be fully restored through substrate intervention. The limited nitrite supply strategy promotes the sedimentation of anammox sludge without significantly affecting its growth rate, and effective sludge retention is crucial for enriching anammox sludge during initial cultivation.

5.
J Environ Manage ; 345: 118707, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37536132

ABSTRACT

Composting is a common and effective strategy for reducing antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) from animal manure. However, it is unclear whether the advantages of composting for the control of ARGs and ARB can be further increased in land application. This study investigated the fate of ARB and ARGs after land application of swine-manure composts (SMCs) to three different soil types (red soil, loess and black soil). The results showed that although the SMCs caused an increase in the abundance of total ARGs in the soil in the short period, they significantly reduced (p < 0.01) the abundance of total ARGs after 82 days compared to the control. The decay rate of ARGs reflected by the half-life times (t1/2) varied by soil type, with red soil being the longest. The SMCs mainly introduced ermF, tetG and tetX into the soils, while these ARGs quickly declined to the control level. Notably, SMCs increased the number of ARB in the soils, especially for cefotaxime-resistant bacteria. Although SMCs only affected the microbiome significantly during the early stage (p < 0.05), it took a much longer time for the microbiome to recover compared to the control. Statistical analysis indicated that changes in the microbial community contributed more to the fate of ARGs during SMCs land application than other factors. Overall, it is proposed that the advantages of ARGs control in the composting process for swine manure can be further increased in land application, but it can still bring some risks in regard to ARB.


Subject(s)
Composting , Soil , Animals , Swine , Genes, Bacterial , Manure/analysis , Angiotensin Receptor Antagonists , Soil Microbiology , Angiotensin-Converting Enzyme Inhibitors , Bacteria/genetics , Anti-Bacterial Agents/pharmacology
6.
J Hazard Mater ; 455: 131561, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37167875

ABSTRACT

Rainfall events are responsible for the accelerated transfer of antibiotic-resistant contaminants to receiving environments. However, the specific profiles of various ARG types, including intra- and extracellular ARGs (iARGs and eARGs) responding to season rainfall needed more comprehensive assessments. Particularly, the key factors driving the distribution and transport of iARGs and eARGs have not been well characterized. Results revealed that the absolute abundance of eARGs was observed to be more than one order of magnitude greater than that of iARGs during the dry season in the reservoir. However, the absolute abundance of iARGs significantly increased after rainfall (p < 0.01). Meanwhile, seasonal rainfall significantly decreased the diversity of eARGs and the number of shared genes between iARGs and eARGs (p < 0.01). Results of structural equation models (SEM) and network analysis showed the rank and co-occurrence of influencing factors (e.g., microbial community, MGEs, environmental variables, and dissolved organic matter (DOM)) concerning the changes in iARGs and eARGs. DOM contributed majorly to eARGs in the reservoir and pathogens was responsible for eARGs in the river during the wet season. Network analysis revealed that the tnp-04 and IS613 genes-related MGEs co-occurred with eARGs in the dry and wet seasons, which were regarded as potential molecular indicators to shape eARGs profiles in urban rivers. Besides, the results demonstrated close relationships between DOM fluorescence signatures and two-typed ARGs. Specifically, humic acid was significantly and positively correlated with the eARGs in the reservoir during the wet season, while fulvic acid-like substances exhibited strong correlations of iARGs and eARGs in the river during the dry season (p < 0.01). This work provides extensive insights into the potential effect of seasonal rainfall on the dynamic distribution of iARGs and eARGs and the dominance of DOM in driving the fate of two-typed ARGs in urban river systems.


Subject(s)
Anti-Bacterial Agents , Rivers , Anti-Bacterial Agents/pharmacology , Seasons , Genes, Bacterial , Drug Resistance, Microbial/genetics
7.
Bioresour Technol ; 374: 128783, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36828226

ABSTRACT

Anaerobic ammonium oxidation (anammox) is a potential process to achieve the neutralization of energy and carbon. Due to the low temperature and variation of municipal sewage, the application of mainstream anammox is hard to be implemented. For spreading mainstream anammox in practice, several key issues and bottlenecks including the start-up, stable NO2--N supply, maintenance and dominance of AnAOB with high activity, prevention of NO3--N buildup, reduction of sludge loss, adaption to the seasonal temperature and alleviation of COD impacts on AnAOB are discussed and summarized in this review in order to improve its startup, stable operation and resilience of mainstream anammox. Hence a combined biological nitrogen removal (CBNR) system based on conventional denitrification, shortcut nitrification-denitrification, Partial Nitritation and partial Denitrification combined Anammox (PANDA) process through the management of organic matter and nitrate is proposed correspondingly aiming at adaptation to the variations of seasonal temperature and pollutants in influent.


Subject(s)
Ammonium Compounds , Denitrification , Wastewater , Anaerobic Ammonia Oxidation , Bioreactors , Oxidation-Reduction , Nitrification , Sewage , Nitrogen
8.
Huan Jing Ke Xue ; 43(7): 3708-3717, 2022 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-35791554

ABSTRACT

This study was based on the pilot one-stage combined partial nitritation and ANAMMOX process (CPNA), using data mining and analysis of 16S rRNA high-throughput sequencing data of activated sludge in the process of sludge bulking and recovery, combined with PISCRUSt2. The function prediction analysis aimed to reveal the microbial community changes and the characteristics of nitrogen metabolism and carbon metabolism at different stages of sludge bulking and recovery of the one-stage CPNA process. The results of the study showed that the microbial α-diversity in the sludge bulking and recovery process first increased and then declined. The relative abundance of Nitrosomonas, Candidatus_Brocadia, and Thaurea decreased in the sludge-bulking stage from 12.36%, 11.86%, and 0.272% to 5.97%, 8.30%, and 0.061%, whereas the relative abundance of Candidatus Kuenenia remained stable. The relative abundance of Levilinea, Longilinea, and Turicibacter increased from 0.031%, 0.018%, and 0.009% to 0.055%, 0.025%, and 0.033%. The PICRUSt2 function prediction analysis results showed that there were a total of 47 functional enzyme genes involved in nitrogen metabolism, of which nitrification, denitrification, dissimilative nitrate reduction (DNRA), assimilation nitrate reduction (ANRA), and nitrogen fixation were relatively abundant. The degrees of each had changed. During the sludge-bulking stage, the relative abundance of the ammonia monooxygenase gene (pmoABC-amoABC) and the hydroxylamine dehydrogenase gene hao decreased, whereas the relative abundance of the nitrate-reducing gene increased at the initial stage and then showed a downward trend. Carbon metabolism analysis showed that sodium acetate had a promoting effect on the heterotrophic growth of the CPNA process, but the energy metabolism and glucose production of sodium acetate were not active.


Subject(s)
Actinobacteria , Microbiota , Anaerobic Ammonia Oxidation , Bacteria , Carbon/metabolism , Microbiota/genetics , Nitrates/metabolism , Nitrogen/metabolism , RNA, Ribosomal, 16S/genetics , Sewage , Sodium Acetate/metabolism
9.
Membranes (Basel) ; 11(11)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34832123

ABSTRACT

The problem of membrane fouling is a key factor restricting the application of the membrane bioreactor (MBR) in the partial nitrosation (PN) and anaerobic ammonia oxidation (anammox) processes. In this study, the pilot-scale continuous flow MBR was used to start up the partial nitrosation process in order to investigate the change trend of mid-transmembrane pressure (TMP) in the process of start-up, which was further explored to clarify the membrane fouling mechanism in the pilot-scale reactor. The results showed that the MBR system was in a stable operating condition during the partial nitrosation operation and that the online automatic backwash operation mode is beneficial in alleviating membrane fouling and reducing the cost of membrane washing. Particular attention was paid to the influence trend of free ammonia (FA)on membrane fouling, and it was found that the increase in FA concentration plays the most critical role in membrane fouling. The increase in FA concentration led to an increase in the extracellular polymer (EPS), dissolved microorganism product (SMP) and soluble chemical oxygen demand (SCOD) concentration. FA was extremely significantly correlated with EPS and SCOD, and the FA concentration was approximately 20.7 mg/L. The SCODeff (effluent SCOD concentration) concentration was approximately 147 mg/L higher than the SCODinf (influent SCOD concentration) concentration. FA mainly affects membrane fouling by affecting the concentration of EPS and SCOD.

10.
Huan Jing Ke Xue ; 42(11): 5472-5480, 2021 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-34708986

ABSTRACT

Two types of full-scale reactors(SBR, 116.6 m3, activated sludge process; SBBR, 64.8 m3, activated sludge and biofilm process) were inoculated with activated sludge from a swine wastewater treatment plant. The effect of NO2--N concentration on ANAMMOX was investigated in the reactors during the start-up of the combined partial nitritation and ANAMMOX(CPNA) process by controlling the dissolved oxygen(DO), aeration mode, and NaNO2 dosing. The results showed that the SBBR was more suitable for rapid start-up of partial nitritation under the same operation conditions. Despite NO2--N inhibition(100-129 mg·L-1, 7 days), the ANAMMOX process was successfully started by the SBR on day 39, and the total nitrogen removal rate and efficiency(TNRR and TNRE) were 0.069 kg·(m3·d) -1 and 23.3%, respectively. However, 17 days of NO2--N inhibition(129-286 mg·L-1) had an unrecoverable effect on ANAMMOX activity in the SBBR. By adding NaNO2, the SBR successfully started the CPNA process on day 77. The TNRR, TNRE, and activity of ANAMMOX from day 51 to 77 increased rapidly from 0.070 to 0.336 kg·(m3·d) -1, 16.0% to 52.2%, and 0.012 to 0.307 kg·(kg·d) -1, respectively. The gene copy concentration of AOB and ANAMMOX bacteria in the SBR increased from the original 8.06×106 and 4.42×104 copies·mL-1 to 1.02×109 and 1.77×107 copies·mL-1, respectively, which indicated that the rapid enrichment of AOB and ANAMMOX bacteria in the SBR was achieved mainly by controlling DO, aeration mode, and NaNO2 dosing. Reasonable nitrite regulation is the key for the start of the CPNA process.


Subject(s)
Ammonium Compounds , Water Purification , Animals , Bioreactors , Nitrites , Nitrogen , Oxidation-Reduction , Sewage , Swine , Wastewater
11.
Bioresour Technol ; 329: 124906, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33662855

ABSTRACT

In order to enhance nitrogen removal through anammox process in the full-scale swine wastewater treatment plant, an innovative regulation strategy of nitrate-based carbon dosage and intermittent aeration was developed to apply the combined biological nitrogen removal process in a full scale anaerobic-anoxic-oxic (A2/O) system. TN removal efficiency reached at 65.5 ± 6.0% in Phase 1 with decreasing external carbon dosage in influent due to the reduction of return nitrate concentration, and it increased to 83.5 ± 6.7% when intermittent aeration was adopted in oxic zone and external carbon source was stopped adding into influent in Phase 2. As a result, the energy consumption for the swine wastewater treatment decreased from 1.93 to 0.9 kW h/m3 and 4.18 to 2.57 kW h/kg N, respectively. Microbial community analysis revealed that the average abundances of Candidatus Brocadia increased from 0.76% to 2.43% and removal of TN through anammox increased from 39% to 77%.


Subject(s)
Denitrification , Water Purification , Animals , Bioreactors , Nitrogen , Oxidation-Reduction , Sewage , Swine , Wastewater
12.
Bioresour Technol ; 329: 124904, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33676354

ABSTRACT

An integration of two processes, magnetic coagulation (MC) and short-cut biological nitrogen removal (SBNR), coupled with a sequencing batch membrane bioreactor (SMBR) controlled by an automatic real-time control strategy (RTC), was developed to treat different characteristics of high strength wastewater. The treatment efficiency and microbial community-diversity of the proposed method was evaluated and investigated using swine wastewater and food waste (FW) digestate. The MC showed high removal of TSS (89.1 ± 1.5%, 92.21 ± 1.8%), turbidity (90.58 ± 2.1%, 95.1 ± 2.1%), TP (88.5 ± 1.9%, 92.1 ± 1.5%), phosphate (87.76 ± 1.6%, 91.22 ± 1.5%), and SMBR achieved stable and excellent removal of COD (96.05 ± 0.2%, 97.39 ± 0.2%), TN (97.30 ± 0.3%, 97.44 ± 0.3%) andNH4+-N (99.07 ± 0.2%, 98.54 ± 0.2%) for swine wastewater and FW digestate, respectively. The effluent COD andNH4+-N concentrations were found to meet their discharge standards. The microbial community comparison showed similar diversity and richness, and genus Diaphorobacter and Thaurea were dominant in denitritation, and Nitrosomonas was dominant in nitritation treating both swine wastewater and FW digestate.


Subject(s)
Refuse Disposal , Wastewater , Animals , Bioreactors , Denitrification , Food , Magnetic Phenomena , Nitrogen , Swine , Waste Disposal, Fluid
13.
Membranes (Basel) ; 11(2)2021 Jan 23.
Article in English | MEDLINE | ID: mdl-33498712

ABSTRACT

A high concentration of suspended solids (SS) in swine wastewater reduces the efficiency of the biological treatment process. The current study developed a short-cut combined magnetic coagulation (MC)-sequence batch membrane bioreactor (SMBR) process to treat swine wastewater. Compared with the single SMBR process, the combined process successfully achieved similarly high removal efficiencies of chemical oxygen demand (COD), total nitrogen (TN), ammonium nitrogen (NH4+-N), and total phosphorous (TP) of 96.0%, 97.6%, 99.0%, and 69.1%, respectively, at dosages of 0.5 g/L of poly aluminium chloride (PAC), 2 mg/L of polyacrylamide (PAM), and 1 g/L of magnetic seeds in Stage II, and concentrations of TN, COD, and NH4+-N in effluent can meet the discharge standards for pollutants for livestock and poultry breeding (GB18596-2001, China). The nitrogen removal loading (NRL) was increased from 0.21 to 0.28 kg/(m3·d), and the hydraulic retention time (HRT) was shortened from 5.0 days to 4.3 days. High-throughput sequencing analysis was carried out to investigate microbial community evolution, and the results showed that the relative abundance of ammonia-oxidizing bacteria (AOB) in the SMBR increased from 0.1% without pre-treatment to 1.78% with the pre-treatment of MC.

14.
Bioresour Technol ; 320(Pt A): 124297, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33137641

ABSTRACT

This study demonstrated the feasibility of anaerobic ammonia oxidation (anammox) served as tertiary nitrogen removal process. An upflow fixed-bed reactor (UFBR) pre-inoculated with anammox bacteria (AnAOB) followed an anoxic/oxic (A/O) reactor treating magnetic-coagulation pretreated municipal wastewater. When bypassing 15% of influent into UFBR, UFBR removed 5.37 mg-TN/L contributing to 23.4% on total TN removal, in which the combination of partial nitritation and partial denitrification with anammox was main nitrogen removal pathway. Relatively low concentrations of NH4+-N and anaerobic environment promoted the growth of ammonia oxidizing archaea (AOA) in the inner-layer of biofilm in UFBR. The cooperation of AOA and ammonia-oxidizing bacteria (AOB) with AnAOB was achieved, with AOA, AOB, and AnAOB abundances of 0.01-0.32%, 0.25-0.44%, and 0.77-2.18% on the biofilm, respectively. Metagenomic analysis found that although AOB was the main NH4+-N oxidizer, archaeal amo gene on biofilm increased threefold during 90 days' treatment.


Subject(s)
Ammonia , Nitrogen , Anaerobiosis , Bioreactors , Denitrification , Oxidation-Reduction , Wastewater/analysis
15.
Bioresour Technol ; 319: 124118, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32957047

ABSTRACT

The proton pump is a convincing mechanism for ammonia inhibition in anaerobic digestion, which explained how the ammonia accumulated intercellularly due to diffusion of free ammonia. Proton pump inhibitor (PPI) was dosed for mitigating the accumulation in anaerobic digestion with ammonia stress, with respect to kinetics. Results show PPI inhibited ß-oxidation of fatty acids by targeting ATPase in anaerobic digestion with ammonia stress. Alternatively, PPI stimulated syntrophic acetate oxidization. Random forest located key genera as syntrophic consortia. Methane increased 18.72 ± 7.39% with 20 mg/L PPI at the first peak, consistent with microbial results. The deterministic Gompertz kinetics and stochastic Gaussian processes contributed 97.63 ± 8.93% and 2.37 ± 8.93% in accumulated methane production, respectively. Thus, the use of PPI for anaerobic digestion allowed mitigate ammonia inhibition based on the mechanism of proton pump, facilitate intercellularly ammonia accumulation, stimulate syntrophic consortia, and eliminate uncertainty of process failure, which resulted in efficient methane production under ammonia stress.


Subject(s)
Ammonia , Microbiota , Anaerobiosis , Bioreactors , Kinetics , Methane , Proton Pump Inhibitors
16.
Waste Manag ; 118: 452-462, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32977305

ABSTRACT

Relieving from ammonia inhibition and enhancing the utilization of thermodynamically unfavorable propionate are crucial for methane harvest in the high solid anaerobic digestion (HSAD) of ammonia-rich swine manure. In this study, the potential of dosing zero-valent iron (ZVI, 150 um) for enhancing the methanogenesis to resist total ammonia (TAN) over 5.0 g-N·L-1 was investigated via batch experiments under mesophilic condition. The cumulative methane production was enhanced by 22.2% at ≥160 mM ZVI dosage and the HSAD duration was further shortened by 50.6% at ≥320 mM ZVI dosage. The enhanced methanogenesis was mainly resulted from the full utilization of propionate and the accelerated collapse of posterior-biodegradable organics which might be driven by ZVI. Results of microbial community and qPCR (mcrA) showed that ZVI might trigger the blooming of Methanosarcina (from 27.9% to 78.3%) and Syntrophomonas (0.5% to 3.7%) and attribute to their possible direct interspecies electron transfer (DIET) to enhance propionate utilization. Besides, the main methanogenesis might remain in the effective aceticlastic pathway even under free ammonia (FAN) almost 1.0 g-N·L-1 because syntrophic acetate oxidizing bacteria (SAOB) decreased to almost none at 320 mM ZVI dosage. Dosing ZVI could relieve HSAD from TAN inhibition and more dosage was required to resist FAN inhibition.


Subject(s)
Ammonia , Manure , Anaerobiosis , Animals , Bioreactors , Iron , Methane , Swine
17.
Sci Total Environ ; 742: 140542, 2020 Nov 10.
Article in English | MEDLINE | ID: mdl-32623174

ABSTRACT

Stable production of nitrite is an essential technical challenge for mainstream anaerobic ammonia oxidation (Anammox). Due to difficulties in the stable inhibition of nitrite oxidizing bacteria (NOB) and maintenance of long-term partial nitritation (PN), integrated multiple, rather than a single, controlling strategies were preferred especially in a continuous-flow treatment system. A mathematically model was developed to evaluate effects of integrated multiple-strategies on ammonia oxidizing bacteria (AOB) and NOB. Through experimental study and model simulation, intermittent aeration and low SRT (3.5 d) resulted in unstable nitrite accumulation. Integrated multiple-strategies of intermittent aeration, low SRT (3.5 d) and bioaugmentation achieved nitrite accumulation rate of 81% and NO2--N/NH4+-N ratio in effluent of 1.29, which was preferable for further anammox process. Meanwhile, the richness and diversity of microbial community increased due to the bioaugmentation. The AOB/NOB ratio increased from 13.8 to 34.1 which facilitated nitrite accumulation. In combination with bioaugmentation, the observed growth rates of AOB and NOB increased from -0.0835 and -0.0282 to 0.0434 and 0.0127 d-1, respectively, which promoted AOB outcompeting NOB in the mixed liquid.


Subject(s)
Ammonia , Wastewater/analysis , Bioreactors , Nitrites , Nitrogen , Oxidation-Reduction
18.
Bioresour Technol ; 315: 123837, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32702579

ABSTRACT

A challenge during the startup of the combined partial nitritation and anammox process is how to balance dissolved oxygen control and nitrite accumulation for converting partial nitritation into anammox, maintaining stable partial nitritation and promoting growth of anammox bacteria. An innovative regulation strategy of nitrite dosing and dissolved oxygen control in this study was developed to achieve the rapid startup of a full-scale combined partial nitritation and anammox reactor within 77 days and the total nitrogen removal rate of reactor was 0.097 kg N/kgMLSS·d-1, and the activity and gene copy concentration of anammox bacteria reached 0.307 kg N/kgMLVSS·d-1 and 7.79 × 109 copies/gMLVSS, respectively. Microbial community analysis revealed that Candidatus_Kuenenia and Nitrosomonas were the dominant nitrogen transformation bacteria with an abundance of 2.49% and 14.86%, respectively. This study offers a new method for rapid startup and spreading application of the full-scale anammox process.


Subject(s)
Nitrites , Oxygen , Animals , Bioreactors , Nitrogen , Nitrosomonas , Oxidation-Reduction , Swine
19.
Sci Total Environ ; 707: 135648, 2020 Mar 10.
Article in English | MEDLINE | ID: mdl-31780172

ABSTRACT

Nitrate built-up is a serious operational difficulty in one-stage partial nitritation anammox (PN/A) process. To investigate an effective method for in-situ restoration, hydroxylamine (NH2OH) and hydrazine (N2H4) of 2 mgN/L were dosed in PN/A process with nitrate built-up in a comparative study. NH2OH treatment showed better performances on TN removal and nitrate reduction than N2H4 and blank control. Through 104 days' addition of NH2OH, MRNN (mole ratio of NO3--N production to NH4+-N removal) was decreased from 70% to 19.91%; TN removal was increased from 0.01 to 0.18 kgN/(m3 d). After stopping the chemical addition, nitrate rebounded for N2H4 treatment, but the restoration effect was stable and persistent for NH2OH. NH2OH addition resulted in a low reductive potential (-250 mV) and exerted strong inhibitions on nitrite oxidizing bacteria activities. Additionally, rapid enhancement of ammonia oxidizing bacteria activities, functional gene (hao) and Nitrosomonas gave rise to the restoration of PN/A with NH2OH addition.


Subject(s)
Hydrazines/chemistry , Hydroxylamine/chemistry , Bioreactors , Nitrogen , Oxidation-Reduction
20.
Environ Int ; 133(Pt B): 105183, 2019 12.
Article in English | MEDLINE | ID: mdl-31675559

ABSTRACT

Swine wastewater is an important reservoir of spread antibiotic resistance to the environment. Intra- and extracellular antibiotic resistance genes (iARGs and eARGs) were quantified during two typical swine wastewater treatment processes including a sequencing membrane bioreactor (SMBR) at pilot-scale and anaerobic-anoxic-oxic (A2O) at full-scale. The concentrations of iARGs and eARGs in raw wastewater were 3.42E+09 and 3.79E+07 copies/mL, respectively. The compositions were different between iARGs and eARGs. SMBR showed 0.63 log higher removals in the concentrations of iARG than A2O, while similar removal effects (3.01-3.44 log copies/mL) of eARGs were performed by the two processes. It suggested that membrane separation had advantages in the concentration removals of iARG rather than eARG. sul1 took the dominance in eARGs in effluent and had positive correlations with intI1, which indicated the risk of horizontal gene transfer of eARGs after wastewater discharge. Microbial community structures were estimated by 16S rRNA gene sequencing with both intra- and extracellular DNA (iDNA and eDNA). Compared between the effluent samples of the two treatment processes, microbial community structures estimated by iDNA had great differences, however which were similar for eDNA. Microbial community and water-quality parameters were the major influencing factors on ARG occurrences during swine wastewater treatment.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Microbiota , Animals , Bioreactors , DNA, Bacterial/genetics , Drug Resistance, Microbial/genetics , Genes, Bacterial , RNA, Ribosomal, 16S/genetics , Swine , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL