Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 319
Filter
2.
Funct Plant Biol ; 51: FP24034, 2024 04.
Article in English | MEDLINE | ID: mdl-38640358

ABSTRACT

Transgenic Arabidopsis thaliana (ecotype Columbia) was successfully transformed with the gene fructose-1,6-bisphosphatase (FBPas e) and named as AtFBPase plants. Transgenic plants exhibited stable transformation, integration and significantly higher expressions for the transformed gene. Morphological evaluation of transgenic plants showed increased plant height (35cm), number of leaves (25), chlorophyll contents (28%), water use efficiency (increased from 1.5 to 2.6µmol CO2 µmol-1 H2 O) and stomatal conductance (20%), which all resulted in an enhanced photosynthetic rate (2.7µmolm-2 s-1 ) compared to wild type plants. This study suggests the vital role of FBPase gene in the modification of regulatory pathways to enhance the photosynthetic rate, which can also be utilised for economic crops in future.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Fructose-Bisphosphatase/genetics , Fructose-Bisphosphatase/metabolism , Fructose/metabolism , Photosynthesis/genetics , Chlorophyll/genetics , Chlorophyll/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
3.
Sci Data ; 11(1): 386, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627408

ABSTRACT

Nicotiana benthamiana is a fundamental model organism in plant research. Recent advancements in genomic sequencing have revealed significant intraspecific genetic variations. This study addresses the pressing need for a precise genome sequence specific to its geographic origin by presenting a comprehensive genome assembly of the N. benthamiana LAB strain from the Republic of Korea (NbKLAB). We compare this assembly with the widely used NbLAB360 strain, shedding light on essential genomic differences between them. The outcome is a high-quality, chromosome-level genome assembly comprising 19 chromosomes, spanning 2,762 Mb, with an N50 of 142.6 Mb. Comparative analyses revealed notable variations, including 46,215 protein-coding genes, with an impressive 99.5% BUSCO completeness score. Furthermore, the NbKLAB assembly substantially improved the QV from 33% for NbLAB360 to 49%. This refined chromosomal genome assembly for N. benthamiana, in conjunction with comparative insights, provides a valuable resource for genomics research and molecular biology. This accomplishment forms a strong foundation for in-depth exploration into the intricacies of plant genetics and genomics, improved precision, and a comparative framework.


Subject(s)
Chromosome Mapping , Genome, Plant , Nicotiana , Genomics , Nicotiana/genetics , Phylogeny , Republic of Korea , Chromosomes, Plant
5.
Biotechnol J ; 19(1): e2300319, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37853601

ABSTRACT

Infectious diseases such as Coronavirus disease 2019 (COVID-19) and Middle East respiratory syndrome (MERS) present an increasingly persistent crisis in many parts of the world. COVID-19 is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The angiotensin-converting enzyme 2 (ACE2) is a crucial cellular receptor for SARS-CoV-2 infection. Inhibition of the interaction between SARS-CoV-2 and ACE2 has been proposed as a target for the prevention and treatment of COVID-19. We produced four recombinant plant-derived ACE2 isoforms with or without the mu tailpiece (µ-tp) of immunoglobulin M (IgM) and the KDEL endoplasmic reticulum retention motif in a plant expression system. The plant-derived ACE2 isoforms bound whole SARS-CoV-2 virus and the isolated receptor binding domains of SARS-CoV-2 Alpha, Beta, Gamma, Delta, and Omicron variants. Fusion of µ-tp and KDEL to the ACE2 protein (ACE2 µK) had enhanced binding activity with SARS-CoV-2 in comparison with unmodified ACE2 protein derived from CHO cells. Furthermore, the plant-derived ACE2 µK protein exhibited no cytotoxic effects on Vero E6 cells and effectively inhibited SARS-CoV-2 infection. The efficient and rapid scalability of plant-derived ACE2 µK protein offers potential for the development of preventive and therapeutic agents in the early response to future viral outbreaks.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Cricetinae , Angiotensin-Converting Enzyme 2/metabolism , Plant Proteins/metabolism , Cricetulus , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Protein Isoforms/metabolism
6.
Sci Data ; 10(1): 713, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853021

ABSTRACT

Improvements in long read DNA sequencing and related techniques facilitated the generation of complex eukaryotic genomes. Despite these advances, the quality of constructed plant reference genomes remains relatively poor due to the large size of genomes, high content of repetitive sequences, and wide variety of ploidy. Here, we developed the de novo sequencing and assembly of high polyploid plant genome, Hibiscus syriacus, a flowering plant species of the Malvaceae family, using the Oxford Nanopore Technologies and Pacific Biosciences Sequel sequencing platforms. We investigated an efficient combination of high-quality and high-molecular-weight DNA isolation procedure and suitable assembler to achieve optimal results using long read sequencing data. We found that abundant ultra-long reads allow for large and complex polyploid plant genome assemblies with great recovery of repetitive sequences and error correction even at relatively low depth Nanopore sequencing data and polishing compared to previous studies. Collectively, our combination provides cost effective methods to improve genome continuity and quality compared to the previously reported reference genome by accessing highly repetitive regions. The application of this combination may enable genetic research and breeding of polyploid crops, thus leading to improvements in crop production.


Subject(s)
Genome, Plant , Hibiscus , Nanopores , Hibiscus/genetics , High-Throughput Nucleotide Sequencing/methods , Plant Breeding , Polyploidy , Sequence Analysis, DNA/methods
7.
Sci Rep ; 13(1): 7331, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37147432

ABSTRACT

Accurately detecting disease occurrences of crops in early stage is essential for quality and yield of crops through the decision of an appropriate treatments. However, detection of disease needs specialized knowledge and long-term experiences in plant pathology. Thus, an automated system for disease detecting in crops will play an important role in agriculture by constructing early detection system of disease. To develop this system, construction of a stepwise disease detection model using images of diseased-healthy plant pairs and a CNN algorithm consisting of five pre-trained models. The disease detection model consists of three step classification models, crop classification, disease detection, and disease classification. The 'unknown' is added into categories to generalize the model for wide application. In the validation test, the disease detection model classified crops and disease types with high accuracy (97.09%). The low accuracy of non-model crops was improved by adding these crops to the training dataset implicating expendability of the model. Our model has the potential to apply to smart farming of Solanaceae crops and will be widely used by adding more various crops as training dataset.


Subject(s)
Deep Learning , Neural Networks, Computer , Algorithms , Crops, Agricultural , Agriculture/methods
8.
Mol Genet Genomics ; 298(3): 653-667, 2023 May.
Article in English | MEDLINE | ID: mdl-36943475

ABSTRACT

The Korean sweet potatoes were bred by various cultivars introduced from Japanese, American, Porto Rico, China, and Burundi. This issue enriched their genetic diversity but also resulted in a mixture of cultivars. For genotyping, we collected and sequenced 66 sweet potato germplasms from different localities around Korea, including 36 modern cultivars, 5 local cultivars, and 25 foreign cultivars. This identified 447.6 million trimmed reads and 324.8 million mapping reads and provided 39,424 single nucleotide polymorphisms (SNPs) markers. Phylogenetic clustering and population structure analysis distinctly classified these germplasms into 5 genetic groups, group 1, group 2, group 3, group 4, and group 5, containing 20, 15, 10, 7, and 14 accessions, respectively. Sixty-three significant SNPs were selected by genome-wide association for sugar composition-related traits (fructose, glucose, and total sugars), total starch, amylose content, and total carotenoid of the storage root. A total of 37 candidate genes encompassing these significant SNPs were identified, among which, 7 genes were annotated to involve in sugar and starch metabolism, including galactose metabolism (itf04g30630), starch and sucrose metabolism (itf03g13270, itf15g09320), carbohydrate metabolism (itf14g10250), carbohydrate and amino acid metabolism (itf12g19270), and amino sugar and nucleotide sugar metabolism (itf03g21950, itf15g04880). This results indicated that sugar and starch are important characteristics to determine the genetic diversity of sweet potatoes. These findings not only illustrate the importance of component traits to genotyping sweet potatoes but also explain an important reason resulting in genetic diversity of sweet potato.


Subject(s)
Genome-Wide Association Study , Ipomoea batatas , Ipomoea batatas/genetics , Ipomoea batatas/chemistry , Ipomoea batatas/metabolism , Phylogeny , Plant Breeding , Starch/genetics , Polymorphism, Single Nucleotide/genetics
9.
Front Plant Sci ; 14: 1142856, 2023.
Article in English | MEDLINE | ID: mdl-36938051

ABSTRACT

The unique color and type characteristics of watermelon fruits are regulated by many molecular mechanisms. However, it still needs to be combined with more abundant genetic data to fine-tune the positioning. We assembled genomes of two Korean inbred watermelon lines (cv. 242-1 and 159-1) with unique color and fruit-type characteristics and identified 23,921 and 24,451 protein-coding genes in the two genomes, respectively. To obtain more precise results for further study, we resequenced one individual of each parental line and an F2 population composed of 87 individuals. This identified 1,539 single-nucleotide polymorphisms (SNPs) and 80 InDel markers that provided a high-density genetic linkage map with a total length of 3,036.9 cM. Quantitative trait locus mapping identified 15 QTLs for watermelon fruit quality-related traits, including ß-carotene and lycopene content in fruit flesh, fruit shape index, skin thickness, flesh color, and rind color. By investigating the mapping intervals, we identified 33 candidate genes containing variants in the coding sequence. Among them, Cla97C01G008760 was annotated as a phytoene synthase with a single-nucleotide variant (A → G) in the first exon at 9,539,129 bp of chromosome 1 that resulted in the conversion of a lysine to glutamic acid, indicating that this gene might regulate flesh color changes at the protein level. These findings not only prove the importance of a phytoene synthase gene in pigmentation but also explain an important reason for the color change of watermelon flesh.

10.
Arch Virol ; 168(2): 77, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36725755

ABSTRACT

The complete nucleotide sequence of a novel gondre (Cirsium setidens)-infecting virus, provisionally named "cirsium virus A" (CiVA), was determined by high-throughput and Sanger sequencing, revealing a genome organization typical of fabaviruses. RNA1 and RNA2 are 5,828 and 3,478 nucleotides long, excluding the 3'-terminal poly(A) tails, each containing a single open reading frame. The highest sequence identity values for the CiVA coat protein and proteinase-polymerase, compared with known fabavirus sequences, were 59.09% and 69.68%, respectively, falling below the current thresholds for Fabavirus species demarcation. Our findings support classifying CiVA as a novel putative member of the genus Fabavirus, subfamily Comovirinae, family Secoviridae.


Subject(s)
Cirsium , Fabavirus , Cirsium/genetics , RNA, Viral/genetics , Genome, Viral , Capsid Proteins/genetics , Phylogeny , Open Reading Frames , Plant Diseases
11.
Arch Virol ; 168(1): 25, 2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36593436

ABSTRACT

The genome of a new potyvirus from a Lamprocapnos spectabilis plant in South Korea was sequenced by high-throughput sequencing and confirmed by Sanger sequencing. The new potyvirus was tentatively named "lamprocapnos virus A" (LaVA); its complete genome contains 9,745 nucleotides, excluding the 3'-terminal poly(A) tail. The LaVA genome structure is similar to that of members of the genus Potyvirus and contains an open reading frame encoding a large putative polyprotein of 3,120 amino acids (aa) with conserved motifs. The complete genome shared 48%-56% nucleotide sequence identity and the polyprotein shared 41%-52% aa sequence identity with those of other potyviruses. These values are below the standard thresholds for potyvirus species demarcation. Phylogenetic analysis based on polyprotein sequences showed that LaVA belongs to the genus Potyvirus. To our knowledge, this is the first report of the complete genome sequence and genome characterization of a potyvirus infecting Lamprocapnos spectabilis.


Subject(s)
Genome, Viral , Potyvirus , Potyvirus/genetics , Phylogeny , RNA, Viral/genetics , Open Reading Frames , Polyproteins/genetics , Plant Diseases
12.
Article in English | WPRIM (Western Pacific) | ID: wpr-1001522

ABSTRACT

Objectives@#The association between long sleep duration and mortality is frequently attributed to the confounding influence of comorbidities. Nevertheless, past efforts to account for comorbidities have yielded inconsistent outcomes. The objective of this study was to evaluate this relationship using a large prospective cohort in Korea. @*Methods@#The study included 114 205 participants from the Health Examinees Study, who were followed for a median of 9.1 years. A composite comorbidity score was developed to summarize the effects of 21 diseases. Using Cox proportional hazards regression, hazard ratios (HRs) and 95% confidence intervals (CIs) for all-cause, cancer, and cardiovascular mortality associated with sleep duration were estimated. These estimates were adjusted for socio-demographic factors, lifestyle factors, body mass index, and comorbidity score. Additionally, a stratified analysis by subgroups with and without comorbidities was conducted. @*Results@#Throughout the follow-up period, 2675 deaths were recorded. After all adjustments, an association was observed between a sleep duration of 8 hours or more and all-cause mortality (HR, 1.10; 95% CI, 1.01 to 1.20). However, no such association was detected in the stratified analysis for the subgroups based on comorbidity status. @*Conclusions@#Long sleep duration was found to be associated with all-cause mortality among Koreans, even after adjusting for comorbidities. Additional studies are required to explore the mechanism underlying the association between sleep duration and major causes of mortality.

13.
Int J Mol Sci ; 23(23)2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36498851

ABSTRACT

The importance of E3 ubiquitin ligases from different families for plant immune signaling has been confirmed. Plant RING-type E3 ubiquitin ligases are members of the E3 ligase superfamily and have been shown to play positive or negative roles during the regulation of various steps of plant immunity. Here, we present Arabidopsis RING-type E3 ubiquitin ligases AtRDUF1 and AtRDUF2 which act as positive regulators of flg22- and SA-mediated defense signaling. Expression of AtRDUF1 and AtRDUF2 is induced by pathogen-associated molecular patterns (PAMPs) and pathogens. The atrduf1 and atrduf2 mutants displayed weakened responses when triggered by PAMPs. Immune responses, including oxidative burst, mitogen-activated protein kinase (MAPK) activity, and transcriptional activation of marker genes, were attenuated in the atrduf1 and atrduf2 mutants. The suppressed activation of PTI responses also resulted in enhanced susceptibility to bacterial pathogens. Interestingly, atrduf1 and atrduf2 mutants showed defects in SA-mediated or pathogen-mediated PR1 expression; however, avirulent Pseudomonas syringae pv. tomato DC3000-induced cell death was unaffected. Our findings suggest that AtRDUF1 and AtRDUF2 are not just PTI-positive regulators but are also involved in SA-mediated PR1 gene expression, which is important for resistance to P. syringae.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Innate Immunity Recognition , Plant Immunity , Arabidopsis/physiology , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Plant Diseases/microbiology , Plant Immunity/genetics , Pseudomonas syringae , Salicylic Acid/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
14.
Sensors (Basel) ; 22(18)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36146422

ABSTRACT

As the demand for ocean exploration increases, studies are being actively conducted on autonomous underwater vehicles (AUVs) that can efficiently perform various missions. To successfully perform long-term, wide-ranging missions, it is necessary to apply fault diagnosis technology to AUVs. In this study, a system that can monitor the health of in situ AUV thrusters using a convolutional neural network (CNN) was developed. As input data, an acoustic signal that comprehensively contains the mechanical and hydrodynamic information of the AUV thruster was adopted. The acoustic signal was pre-processed into two-dimensional data through continuous wavelet transform. The neural network was trained with three different pre-processing methods and the accuracy was compared. The decibel scale was more effective than the linear scale, and the normalized decibel scale was more effective than the decibel scale. Through tests on off-training conditions that deviate from the neural network learning condition, the developed system properly recognized the distribution characteristics of noise sources even when the operating speed and the thruster rotation speed changed, and correctly diagnosed the state of the thruster. These results showed that the acoustic signal-based CNN can be effectively used for monitoring the health of the AUV's thrusters.


Subject(s)
Acoustics , Neural Networks, Computer , Noise , Wavelet Analysis
15.
Arch Virol ; 167(12): 2767-2770, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36044094

ABSTRACT

The complete genomic nucleotide sequence of hemisteptia virus A (HemVA) from a Hemisteptia lyrata Bunge plant in South Korea was identified by high-throughput sequencing. The HemVA genome consists of 6,122 nucleotides and contains seven putative open reading frames, ORF0-5 and ORF3a, encoding the putative proteins P0-P5 and P3a, respectively. Pairwise amino acid sequence analysis shows that the HemVA P1-P5 proteins have the highest sequence identity (23.68%-54.15%) to the corresponding proteins of members of the families Solemoviridae and Tombusviridae. Phylogenetic analysis of the P1-P2 and P3 amino acid sequences indicated that HemVA should be classified as a member of a distinct species in the genus Polerovirus.


Subject(s)
Luteoviridae , Plant Diseases , Base Sequence , Genome, Viral , High-Throughput Nucleotide Sequencing , Luteoviridae/genetics , Open Reading Frames , Phylogeny , RNA, Viral/genetics , Viral Proteins/genetics
16.
Arch Virol ; 167(8): 1707-1711, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35598208

ABSTRACT

A new virus, tentatively named "kudzu virus D" (KuVD) was discovered in kudzu (Pueraria montana var. lobata) in South Korea. Its complete genome comprises 7,922 nucleotides, excluding the poly(A) tail, and contains five open reading frames (ORFs) encoding, from 5' to 3', a replicase (ORF1), three triple gene block proteins TGB1-3 (ORF2-ORF4), and a coat protein (ORF5). This genome organization is typical of members of the subfamily Quinvirinae of the family Betaflexiviridae. Pairwise alignment analysis revealed that the nucleotide sequences of the replicase and coat protein of KuVD were 12.13-54.46% and 24.03-50.67% identical, respectively, to those of other members of the family Betaflexiviridae. These values are far below the current species ICTV demarcation threshold. Consequently, KuVD should be considered a member of a new species in the subfamily Quinvirinae.


Subject(s)
Flexiviridae , Pueraria , Flexiviridae/genetics , Genome, Viral , Open Reading Frames , Phylogeny , Plant Diseases
17.
BMC Genomics ; 23(1): 326, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35468724

ABSTRACT

BACKGROUND: Most crop seeds are F1 hybrids. Seed providers and plant breeders must be confident that the seed supplied to growers is of known, and uniform, genetic makeup. This requires maintenance of pure genotypes of the parental lines and testing to ensure the genetic purity of the F1 seed. Traditionally, seed purity has been assessed with a grow-out test (GOT) in the field, a time consuming and costly venture. Early in the last decade, seed testing with molecular markers was introduced as a replacement for GOT, and Kompetitive allele specific PCR (KASP) markers were recognized as promising tools for genetic testing of seeds. However, the markers available at that time could be inaccurate and applicable to only a small number of accessions or varieties due to the limited genetic information and reference genomes available. RESULTS: We identified 4,925,742 SNPs in 50 accessions of the Brasscia rapa core collection. From these, we identified 2,925 SNPs as accession-specific, considering properties of flanking region harboring accession-specific SNPs and genic region conservation among accessions by the Next Generation Sequencing (NGS) analysis. In total, 100 accession-specific markers were developed as accession-specific KASP markers. Based on the results of our validation experiments, the accession-specific markers successfully distinguised individuals from the mixed population including 50 target accessions from B. rapa core collection and the outgroup. Additionally, the marker set we developed here discriminated F1 hybrids and their parental lines with distinct clusters. CONCLUSIONS: This study provides efficient methods for developing KASP markers to distinguish individuals from the mixture comprised of breeding lines and germplasms from the resequencing data of Chinese cabbage (Brassica rapa spp. pekinensis).


Subject(s)
Brassica rapa , Alleles , Brassica rapa/genetics , Humans , Plant Breeding , Polymerase Chain Reaction , Seeds/genetics
18.
Plant Cell ; 34(6): 2383-2403, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35262729

ABSTRACT

In plants, heat stress induces changes in alternative splicing, including intron retention; these events can rapidly alter proteins or downregulate protein activity, producing nonfunctional isoforms or inducing nonsense-mediated decay of messenger RNA (mRNA). Nuclear cyclophilins (CYPs) are accessory proteins in the spliceosome complexes of multicellular eukaryotes. However, whether plant CYPs are involved in pre-mRNA splicing remain unknown. Here, we found that Arabidopsis thaliana CYP18-1 is necessary for the efficient removal of introns that are retained in response to heat stress during germination. CYP18-1 interacts with Step II splicing factors (PRP18a, PRP22, and SWELLMAP1) and associates with the U2 and U5 small nuclear RNAs in response to heat stress. CYP18-1 binds to phospho-PRP18a, and increasing concentrations of CYP18-1 are associated with increasing dephosphorylation of PRP18a. Furthermore, interaction and protoplast transfection assays revealed that CYP18-1 and the PP2A-type phosphatase PP2A B'η co-regulate PRP18a dephosphorylation. RNA-seq and RT-qPCR analysis confirmed that CYP18-1 is essential for splicing introns that are retained under heat stress. Overall, we reveal the mechanism of action by which CYP18-1 activates the dephosphorylation of PRP18 and show that CYP18-1 is crucial for the efficient splicing of retained introns and rapid responses to heat stress in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Alternative Splicing/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cyclophilins/genetics , Cyclophilins/metabolism , Heat-Shock Response/genetics , Introns/genetics , RNA Splicing , RNA, Messenger/genetics
19.
Cell Rep ; 38(13): 110579, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35354037

ABSTRACT

Tuberization is an important developmental process in potatoes, but it is highly affected by environmental conditions. Temperature is a major environmental factor affecting tuberization, with high temperatures suppressing tuber development. However, the temporal aspects of thermo-responsive tuberization remain elusive. In this study, we show that FT homolog StSP6A is suppressed by temporally distinct regulatory pathways. Experiments using StSP6A-overexpressing plants show that post-transcriptional regulation plays a major role at the early stage, while transcriptional regulation is an important late-stage factor, suppressing StSP6A at high temperatures in leaves. Overexpression of StSP6A in leaves restores tuber formation but does not recover tuber yield at the late stage, possibly because of suppressed sugar transport at high temperatures. Transcriptome analyses lead to the identification of potential regulators that may be involved in thermo-responsive tuberization at different stages. Our work shows that potato has temporally distinct molecular mechanisms that finely control tuber development at high temperatures.


Subject(s)
Solanum tuberosum , Gene Expression Regulation, Plant , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Tubers/genetics , Plant Tubers/metabolism , Solanum tuberosum/genetics , Solanum tuberosum/metabolism
20.
Arch Virol ; 167(5): 1361-1364, 2022 May.
Article in English | MEDLINE | ID: mdl-35332365

ABSTRACT

The complete genome sequence of a putative new virus isolate, provisionally named "Fagopyrum esculentum endornavirus 2" (FeEV2), is 15,706 nucleotides long with a single, large open reading frame and a typical endornavirus genome organization. FeEV2 shares 19.4%-22.1% nucleotide sequence identity with other known endornavirus genome sequences. The putative polyprotein, RNA-dependent RNA polymerase (RdRp), helicase, and glycosyltransferase (GT) share 10.6%-24.3%, 30.4%-66.1%, 16.3%-45.7%, and 10.1%-21.6% amino acid sequence identity, respectively, with the homologous sequenced proteins from known endornaviruses. This suggests that it is a member of a new, distinct species. Phylogenetic analysis of RdRp sequences places FeEV2 with other Alphaendornavirus genus members (family Endornaviridae). This is the first report of the complete genome sequence of FeEV2, which was isolated from Fagopyrum esculentum in South Korea.


Subject(s)
Fagopyrum , RNA Viruses , Fagopyrum/genetics , Genome, Viral , Open Reading Frames , Phylogeny , RNA, Viral/genetics , RNA-Dependent RNA Polymerase , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...