Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Oecologia ; 204(3): 505-515, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38265600

ABSTRACT

Megafauna are important seed dispersers because they can disperse large quantities of seeds over long distances. In Hokkaido, Japan, the largest terrestrial animal is the brown bear (Ursus arctos) and other megafauna seed dispersers are lacking. Thus, brown bears are expected to have an important function as seed dispersers in Hokkaido. In this study, we, for the first time, evaluated the seed dispersal function of brown bears in Hokkaido using three fleshy-fruited trees and studied: (1) gut passage time (GPT) in feeding experiments, (2) seed dispersal distance using tracking data of wild bears, and (3) the effect of gut passage and pulp removal on germination rate. Most seeds were defecated intact, and less than 6% were broken. The average GPT without pulp was 3 h and 56 min to 6 h and 13 min, depending on the plant and trial. Each plant's average simulated seed dispersal distance was 202-512 m. The dispersal distance of Actinidia arguta seeds with pulp was significantly longer than those without pulp because of their longer GPT. The germination rate of defecated seeds without pulp was 19-51%, depending on the plant, and was significantly higher or not different comparing with that of seeds with pulp. We concluded that brown bears in Hokkaido are effective seed dispersers. In managing brown bears in Hokkaido, such ecological functions should be considered along with conserving the bear population and reducing human-bear conflicts.


Subject(s)
Seed Dispersal , Ursidae , Animals , Humans , Japan , Seeds , Fruit , Plants , Germination , Feeding Behavior
3.
Biotechnol Prog ; 40(1): e3391, 2024.
Article in English | MEDLINE | ID: mdl-37733879

ABSTRACT

Fouling by protein aggregates reduces virus removal filter performance. In the present study, we investigated the effects of different-sized protein aggregates on fouling and aggregate retention in order to better understand the fouling mechanisms. Human immunoglobulin G was denatured by heating to produce aggregates of various sizes and then fractionated by size exclusion chromatography into different-sized aggregates with a narrow size distribution. The fractionated aggregates were filtered on Planova 20N, a virus removal filter known for its stable filtration capability. Analysis of flux behavior demonstrated different flux decrease patterns for different-sized aggregates. Observation of aggregate retention by staining revealed that larger aggregates were captured closer to the inner surface of the membrane while smaller aggregates penetrated farther into the membrane. These findings demonstrate that Planova 20N has a gradient structure with decreasing pore size from the inner to the outer surface of the membrane. This structure minimizes fouling and enables stable filtration by protecting the smaller pores located closer to the outer surface from clogging by large aggregates. Applying the predominant clogging models to the present filtrations revealed that clogging behavior transitioned from complete blocking to cake filtration as filtration progressed. In this combination model, after a certain number of pores are blocked by complete blocking, newly arrived aggregates begin to accumulate on previously captured aggregates, generating cake between capture layers within the membrane. Application of the approaches described here will facilitate elucidation of membrane fouling and virus removal mechanisms.


Subject(s)
Membranes, Artificial , Protein Aggregates , Humans , Filtration/methods , Immunoglobulin G
4.
Hemodial Int ; 19 Suppl 3: S20-5, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26448383

ABSTRACT

Vitamin E (vit E) is coated on polysulfone (PS) dialysis membrane for antioxidative purpose. The membrane, however, has not yet been evaluated from the mass transfer point of view. We investigated this PS membrane with and without vit E coating in vitro ultrafiltration experiments to identify whether or not the coating influences the mass transfer. Dialyzers that included PS membrane with and without vit E coating were investigated. Aqueous test solution of various solutes including vitamin B12 (VB12 , MW1355), chymotrypsin (chymo, MW25000), and albumin (alb, MW66000) was prepared, and normal ultrafiltration experiments were performed at 310 K. Reverse ultrafiltration experiments in which test solution was filtered from outside to inside the hollow fiber were also performed. Sieving coefficients (SC) were computed for evaluation. SC for VB12 was the same regardless of vit E coating; however, chymo was 0.82 ± 0.01 and 0.86 ± 0.01, respectively, for the membrane with and without vit E. Thus, it would be understood that vit E coating reduces the pore size of the membrane, resulting the reduced transport of larger solutes. Like other PS membrane, SC for alb was decreased over time regardless of vit E coating. More importantly, although the steady-state SC for alb was almost identical in two membranes, PS without vit E showed much greater decrease for the first 2 h, while that with vit E showed very little decrease over time, which suggested the reduced fouling effect due to vit E coating. All the SC values found in reverse ultrafiltration were higher than those found in normal ultrafiltration; moreover, the degree of increase with chymo was approximately 5%, whereas that with alb was approximately 430%, which may be explained by a new model in which wedge effect is taken into consideration for the membrane transport. Vit E coating not only has antioxidative effect but also reduces the fouling that is usually caused by various proteins.


Subject(s)
Polymers/chemistry , Renal Dialysis/methods , Sulfones/chemistry , Vitamin E/chemistry , Antioxidants , Humans , Membranes, Artificial
5.
Chem Commun (Camb) ; (5): 430-1, 2002 Mar 07.
Article in English | MEDLINE | ID: mdl-12120526

ABSTRACT

A novel class of sulfated glycolipids with excellent self-assembling capacity to form stable monolayers at an air-water interface and specific erythrocyte-like liposomes was synthesised from alpha, beta, and gamma-cyclodextrins as starting materials.


Subject(s)
Cyclodextrins/chemistry , Liposomes/chemistry , Surface-Active Agents/chemistry , 1,2-Dipalmitoylphosphatidylcholine , Cholesterol , Erythrocyte Membrane/chemistry , Microscopy, Electron
SELECTION OF CITATIONS
SEARCH DETAIL
...