Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Cell Chem Biol ; 30(5): 457-469.e11, 2023 05 18.
Article in English | MEDLINE | ID: mdl-37148884

ABSTRACT

Artemisinins (ART) are critical anti-malarials and despite their use in combination therapy, ART-resistant Plasmodium falciparum is spreading globally. To counter ART resistance, we designed artezomibs (ATZs), molecules that link an ART with a proteasome inhibitor (PI) via a non-labile amide bond and hijack parasite's own ubiquitin-proteasome system to create novel anti-malarials in situ. Upon activation of the ART moiety, ATZs covalently attach to and damage multiple parasite proteins, marking them for proteasomal degradation. When damaged proteins enter the proteasome, their attached PIs inhibit protease function, potentiating the parasiticidal action of ART and overcoming ART resistance. Binding of the PI moiety to the proteasome active site is enhanced by distal interactions of the extended attached peptides, providing a mechanism to overcome PI resistance. ATZs have an extra mode of action beyond that of each component, thereby overcoming resistance to both components, while avoiding transient monotherapy seen when individual agents have disparate pharmacokinetic profiles.


Subject(s)
Antimalarials , Artemisinins , Parasites , Plasmodium , Animals , Antimalarials/chemistry , Proteasome Endopeptidase Complex/metabolism , Parasites/metabolism , Pharmacophore , Ubiquitin , Plasmodium/metabolism , Artemisinins/pharmacology , Drug Resistance
2.
J Med Chem ; 66(2): 1172-1185, 2023 01 26.
Article in English | MEDLINE | ID: mdl-36608337

ABSTRACT

We describe our discovery and development of potent and highly selective inhibitors of human constitutive proteasome chymotryptic activity (ß5c). Structure-activity relationship studies of the novel class of inhibitors focused on optimization of N-cap, C-cap, and side chain of the chemophore asparagine. Compound 32 is the most potent and selective ß5c inhibitor in this study. A docking study provides a structure rationale for potency and selectivity. Kinetic studies show a reversible and noncompetitive inhibition mechanism. It enters the cells to engage the proteasome target, potently and selectively kills multiple myeloma cells, and does so by synergizing with a ß5i-selective inhibitor.


Subject(s)
Asparagine , Proteasome Endopeptidase Complex , Humans , Proteasome Endopeptidase Complex/metabolism , Kinetics , Structure-Activity Relationship , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/chemistry
3.
J Med Chem ; 63(21): 13103-13123, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33095579

ABSTRACT

The immunoproteasome (i-20S) has emerged as a therapeutic target for autoimmune and inflammatory disorders and hematological malignancies. Inhibition of the chymotryptic ß5i subunit of i-20S inhibits T cell activation, B cell proliferation, and dendritic cell differentiation in vitro and suppresses immune responses in animal models of autoimmune disorders and allograft rejection. However, cytotoxicity to immune cells has accompanied the use of covalently reactive ß5i inhibitors, whose activity against the constitutive proteasome (c-20S) is cumulative with the time of exposure. Herein, we report a structure-activity relationship study of a class of noncovalent proteasome inhibitors with picomolar potencies and 1000-fold selectivity for i-20S over c-20S. Furthermore, these inhibitors are specific for ß5i over the other five active subunits of i-20S and c-20S, providing useful tools to study the functions of ß5i in immune responses. The potency of these compounds in inhibiting human T cell activation suggests that they may have therapeutic potential.


Subject(s)
Dipeptides/chemistry , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Binding Sites , Cell Proliferation/drug effects , Dipeptides/metabolism , Dipeptides/pharmacology , HeLa Cells , Humans , Inhibitory Concentration 50 , Kinetics , Lymphocyte Activation/drug effects , Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/metabolism , Proteasome Inhibitors/pharmacology , Protein Binding , Protein Subunits/antagonists & inhibitors , Protein Subunits/metabolism , Structure-Activity Relationship , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
4.
Mol Cell ; 75(5): 933-943.e6, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31326272

ABSTRACT

Target RNA binding to crRNA-bound type III-A CRISPR-Cas multi-subunit Csm surveillance complexes activates cyclic-oligoadenylate (cAn) formation from ATP subunits positioned within the composite pair of Palm domain pockets of the Csm1 subunit. The generated cAn second messenger in turn targets the CARF domain of trans-acting RNase Csm6, triggering its HEPN domain-based RNase activity. We have undertaken cryo-EM studies on multi-subunit Thermococcus onnurineus Csm effector ternary complexes, as well as X-ray studies on Csm1-Csm4 cassette, both bound to substrate (AMPPNP), intermediates (pppAn), and products (cAn), to decipher mechanistic aspects of cAn formation and release. A network of intermolecular hydrogen bond alignments accounts for the observed adenosine specificity, with ligand positioning dictating formation of linear pppAn intermediates and subsequent cAn formation by cyclization. We combine our structural results with published functional studies to highlight mechanistic insights into the role of the Csm effector complex in mediating the cAn signaling pathway.


Subject(s)
Adenine Nucleotides/chemistry , Archaeal Proteins/chemistry , CRISPR-Cas Systems , Oligoribonucleotides/chemistry , Ribonucleases/chemistry , Second Messenger Systems , Thermococcus/chemistry , Adenine Nucleotides/metabolism , Archaeal Proteins/metabolism , Cryoelectron Microscopy , Oligoribonucleotides/metabolism , Ribonucleases/metabolism , Thermococcus/metabolism , Thermococcus/ultrastructure
5.
J Med Chem ; 62(13): 6137-6145, 2019 07 11.
Article in English | MEDLINE | ID: mdl-31177777

ABSTRACT

The Plasmodium proteasome (Pf20S) emerged as a target for antimalarials. Pf20S inhibitors are active at multiple stages of the parasite life cycle and synergize with artemisinins, suggesting that Pf20S inhibitors have potential to be prophylactic, therapeutic, and transmission blocking as well as are useful for combination therapy. We recently reported asparagine ethylenediamines (AsnEDAs) as immunoproteasome inhibitors and modified AsnEDAs as selective Pf20S inhibitors. Here, we report further a structure-activity relationship study of AsnEDAs for selective inhibition of Pf20S over human proteasomes. Additionally, we show new mutation that conferred resistance to AsnEDAs and collateral sensitivity to an inhibitor of the Pf20S ß2 subunit, the same as previously identified resistant mutation. This resistance could be overcome through the use of the structure-guided inhibitor design. Collateral sensitivity to inhibitors among respective proteasome subunits underscores the potential value of treating malaria with combinations of inhibitors of different proteasome subunits to minimize the emergence of drug resistance.


Subject(s)
Antimalarials/pharmacology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/drug effects , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Antimalarials/chemistry , Antimalarials/metabolism , Asparagine/chemistry , Asparagine/metabolism , Drug Resistance/drug effects , Drug Resistance/genetics , Ethylenediamines/chemistry , Ethylenediamines/metabolism , Humans , Malaria, Falciparum/metabolism , Malaria, Falciparum/parasitology , Mutation , Plasmodium falciparum/genetics , Plasmodium falciparum/physiology , Proteasome Endopeptidase Complex/genetics
6.
Proc Natl Acad Sci U S A ; 115(29): E6863-E6870, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29967165

ABSTRACT

We describe noncovalent, reversible asparagine ethylenediamine (AsnEDA) inhibitors of the Plasmodium falciparum proteasome (Pf20S) ß5 subunit that spare all active subunits of human constitutive and immuno-proteasomes. The compounds are active against erythrocytic, sexual, and liver-stage parasites, against parasites resistant to current antimalarials, and against P. falciparum strains from patients in Africa. The ß5 inhibitors synergize with a ß2 inhibitor in vitro and in mice and with artemisinin. P. falciparum selected for resistance to an AsnEDA ß5 inhibitor surprisingly harbored a point mutation in the noncatalytic ß6 subunit. The ß6 mutant was resistant to the species-selective Pf20S ß5 inhibitor but remained sensitive to the species-nonselective ß5 inhibitors bortezomib and carfilzomib. Moreover, resistance to the Pf20S ß5 inhibitor was accompanied by increased sensitivity to a Pf20S ß2 inhibitor. Finally, the ß5 inhibitor-resistant mutant had a fitness cost that was exacerbated by irradiation. Thus, used in combination, multistage-active inhibitors of the Pf20S ß5 and ß2 subunits afford synergistic antimalarial activity with a potential to delay the emergence of resistance to artemisinins and each other.


Subject(s)
Antimalarials/chemistry , Plasmodium falciparum/enzymology , Proteasome Endopeptidase Complex/chemistry , Proteasome Inhibitors/chemistry , Protozoan Proteins/antagonists & inhibitors , Artemisinins/chemistry , Bortezomib/chemistry , Drug Resistance, Microbial , Humans , Lactones/chemistry , Oligopeptides/chemistry , Protozoan Proteins/chemistry
7.
Biochemistry ; 56(1): 324-333, 2017 Jan 10.
Article in English | MEDLINE | ID: mdl-27976853

ABSTRACT

The Mycobacterium tuberculosis (Mtb) 20S proteasome is vital for the pathogen to survive under nitrosative stress in vitro and to persist in mice. To qualify for drug development, inhibitors targeting Mtb 20S must spare both the human constitutive proteasome (c-20S) and immunoproteasome (i-20S). We recently reported members of a family of noncovalently binding dipeptide proteasome inhibitors that are highly potent and selective for Mtb 20S over human c-20S and i-20S. To understand the structural basis of their potency and selectivity, we have studied the structure-activity relationship of six derivatives and solved their cocrystal structures with Mtb 20S. The dipeptide inhibitors form an antiparallel ß-strand with the active site ß-strands. Selectivity is conferred by several features of Mtb 20S relative to its mouse counterparts, including a larger S1 pocket, additional hydrogen bonds in the S3 pocket, and hydrophobic interactions in the S4 pocket. Serine-20 and glutamine-22 of Mtb 20S interact with the dipeptides and confer Mtb-specific inhibition over c-20S and i-20S. The Mtb 20S and mammalian i-20S have a serine-27 that interacts strongly with the dipeptides, potentially explaining the higher inhibitory activity of the dipeptides toward i-20S over c-20S. This detailed structural knowledge will aid in optimizing the dipeptides as anti-tuberculosis drugs.


Subject(s)
Bacterial Proteins/chemistry , Dipeptides/chemistry , Mycobacterium tuberculosis/metabolism , Proteasome Endopeptidase Complex/chemistry , Animals , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Crystallization , Crystallography, X-Ray , Dipeptides/metabolism , Dipeptides/pharmacology , Glutamine/chemistry , Glutamine/metabolism , Humans , Mice , Models, Molecular , Molecular Structure , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/chemistry , Proteasome Inhibitors/metabolism , Proteasome Inhibitors/pharmacology , Protein Binding , Protein Conformation/drug effects , Protein Domains , Serine/chemistry , Serine/metabolism , Species Specificity , Structure-Activity Relationship
8.
Proc Natl Acad Sci U S A ; 113(52): E8425-E8432, 2016 12 27.
Article in English | MEDLINE | ID: mdl-27956634

ABSTRACT

Constitutive proteasomes (c-20S) are ubiquitously expressed cellular proteases that degrade polyubiquitinated proteins and regulate cell functions. An isoform of proteasome, the immunoproteasome (i-20S), is highly expressed in human T cells, dendritic cells (DCs), and B cells, suggesting that it could be a potential target for inflammatory diseases, including those involving autoimmunity and alloimmunity. Here, we describe DPLG3, a rationally designed, noncovalent inhibitor of the immunoproteasome chymotryptic subunit ß5i that has thousands-fold selectivity over constitutive ß5c. DPLG3 suppressed cytokine release from blood mononuclear cells and the activation of DCs and T cells, diminished accumulation of effector T cells, promoted expression of exhaustion and coinhibitory markers on T cells, and synergized with CTLA4-Ig to promote long-term acceptance of cardiac allografts across a major histocompatibility barrier. These findings demonstrate the potential value of using brief posttransplant immunoproteasome inhibition to entrain a long-term response favorable to allograft survival as part of an immunomodulatory regimen that is neither broadly immunosuppressive nor toxic.


Subject(s)
Graft Survival , Heart Transplantation/methods , Immunosuppressive Agents/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation , Cytokines/immunology , Dendritic Cells/cytology , Dendritic Cells/immunology , Hep G2 Cells , Humans , Immunologic Memory , Leukocytes, Mononuclear/cytology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , T-Lymphocytes/immunology
9.
Anal Chem ; 88(22): 11147-11153, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27749041

ABSTRACT

Nuclear magnetic resonance (NMR) spectroscopy is widely used in metabolomics to perform quantitative profiling of low-molecular weight compounds from biological specimens. The measurement of endogenous metabolites using NMR has proven to be a powerful tool to identify new metabolic biomarkers in physiological and pathological conditions, and to study and evaluate treatment efficiency. In this study we present a rapid approach to indirectly quantify 13C enriched molecules using one-dimensional (1D) 1H NMR. We demonstrate this approach using isotopically labeled [1,6-13C]glucose and in four different cell lines. We confirm the applicability of this approach for treatment follow-up, utilizing a renal cancer cell line with rapamycin as a tool compound to study changes in metabolic profiles. Finally, we validate the applicability of this method to study metabolic biomarkers from ex vivo tumor extracts, after infusion, using isotopically enriched glucose. Given the high throughput and increased sensitivity of direct-detect 1H NMR, this analytical approach provides an avenue for simple and rapid metabolic analysis of biological samples including blood, urine, and biopsies.


Subject(s)
High-Throughput Screening Assays , Metabolomics , Proton Magnetic Resonance Spectroscopy , Carbon Isotopes , Cell Line , Glucose/chemistry , Humans , Molecular Structure , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/metabolism
10.
Neoplasia ; 17(8): 671-84, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26408259

ABSTRACT

Cancer cells adapt their metabolism during tumorigenesis. We studied two isogenic breast cancer cells lines (highly metastatic 4T1; nonmetastatic 67NR) to identify differences in their glucose and glutamine metabolism in response to metabolic and environmental stress. Dynamic magnetic resonance spectroscopy of (13)C-isotopomers showed that 4T1 cells have higher glycolytic and tricarboxylic acid (TCA) cycle flux than 67NR cells and readily switch between glycolysis and oxidative phosphorylation (OXPHOS) in response to different extracellular environments. OXPHOS activity increased with metastatic potential in isogenic cell lines derived from the same primary breast cancer: 4T1 > 4T07 and 168FARN (local micrometastasis only) > 67NR. We observed a restricted TCA cycle flux at the succinate dehydrogenase step in 67NR cells (but not in 4T1 cells), leading to succinate accumulation and hindering OXPHOS. In the four isogenic cell lines, environmental stresses modulated succinate dehydrogenase subunit A expression according to metastatic potential. Moreover, glucose-derived lactate production was more glutamine dependent in cell lines with higher metastatic potential. These studies show clear differences in TCA cycle metabolism between 4T1 and 67NR breast cancer cells. They indicate that metastases-forming 4T1 cells are more adept at adjusting their metabolism in response to environmental stress than isogenic, nonmetastatic 67NR cells. We suggest that the metabolic plasticity and adaptability are more important to the metastatic breast cancer phenotype than rapid cell proliferation alone, which could 1) provide a new biomarker for early detection of this phenotype, possibly at the time of diagnosis, and 2) lead to new treatment strategies of metastatic breast cancer by targeting mitochondrial metabolism.


Subject(s)
Adaptation, Physiological , Glucose/metabolism , Glutamine/metabolism , Tumor Microenvironment , Animals , Carbon-13 Magnetic Resonance Spectroscopy/methods , Cell Line, Tumor , Cell Survival/drug effects , Citric Acid Cycle/drug effects , Energy Metabolism/drug effects , Glucose/pharmacology , Glutamine/pharmacology , Glycolysis/drug effects , Hydrogen-Ion Concentration , Mammary Neoplasms, Animal/metabolism , Mammary Neoplasms, Animal/pathology , Mice, Inbred BALB C , Neoplasm Metastasis , Oxidative Phosphorylation/drug effects , Phospholipids/metabolism
11.
Exp Cell Res ; 318(4): 326-35, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22178238

ABSTRACT

Human mesenchymal stem cells (hMSCs) are bone marrow-derived stromal cells, which play a role in tumor progression. We have shown earlier that breast cancer cells secrete higher levels of interleukin-6 (IL-6) under hypoxia, leading to the recruitment of hMSCs towards hypoxic tumor cells. We found that (i) MDA-MB-231 cells secrete significantly higher levels of lactate (3-fold more) under hypoxia (1% O(2)) than under 20% O(2) and (ii) lactate recruits hMSCs towards tumor cells by activating signaling pathways to enhance migration. The mRNA and protein expression of functional MCT1 in hMSCs is increased in response to lactate exposure. Thus, we hypothesized that hMSCs and stromal carcinoma associated fibroblasts (CAFs) in the tumor microenvironment have the capacity to take up lactate expelled from tumor cells and use it as a source of energy. Our (13)C NMR spectroscopic measurements indicate that (13)C-lactate is converted to (13)C-alpha ketoglutarate in hMSCs and CAFs supporting this hypothesis. To our knowledge this is the first in vitro model system demonstrating that hMSCs and CAFs can utilize lactate produced by tumor cells.


Subject(s)
Breast Neoplasms/metabolism , Carcinoma/metabolism , Glycolysis/drug effects , Lactic Acid/pharmacology , Metabolic Networks and Pathways/drug effects , Stromal Cells/drug effects , Tumor Microenvironment/drug effects , Breast Neoplasms/pathology , Carcinoma/pathology , Cell Communication/drug effects , Cell Communication/physiology , Cell Line, Tumor , Female , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/physiology , Glycolysis/physiology , Humans , Hypoxia/metabolism , Hypoxia/pathology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/pathology , Paracrine Communication/drug effects , Paracrine Communication/physiology , Stromal Cells/metabolism , Stromal Cells/pathology , Tumor Microenvironment/physiology
12.
J Bacteriol ; 192(14): 3661-8, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20472794

ABSTRACT

The Mycobacterium tuberculosis cell envelope contains a wide variety of lipids and glycolipids, including mycolic acids, long-chain branched fatty acids that are decorated by cyclopropane rings. Genetic analysis of the mycolate methyltransferase family has been a powerful approach to assign functions to each of these enzymes but has failed to reveal the origin of cis cyclopropanation of the oxygenated mycolates. Here we examine potential redundancy between mycolic acid methyltransferases by generating and analyzing M. tuberculosis strains lacking mmaA2 and cmaA2, mmaA2 and cmaA1, or mmaA1 alone. M. tuberculosis lacking both cmaA2 and mmaA2 cannot cis cyclopropanate methoxymycolates or ketomycolates, phenotypes not shared by the mmaA2 and cmaA2 single mutants. In contrast, a combined loss of cmaA1 and mmaA2 had no effect on mycolic acid modification compared to results with a loss of mmaA2 alone. Deletion of mmaA1 from M. tuberculosis abolishes trans cyclopropanation without accumulation of trans-unsaturated oxygenated mycolates, placing MmaA1 in the biosynthetic pathway for trans-cyclopropanated oxygenated mycolates before CmaA2. These results define new functions for the mycolic acid methyltransferases of M. tuberculosis and indicate a substantial redundancy of function for MmaA2 and CmaA2, the latter of which can function as both a cis and trans cyclopropane synthase for the oxygenated mycolates.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/physiology , Methyltransferases/metabolism , Mycobacterium tuberculosis/metabolism , Mycolic Acids/chemistry , Mycolic Acids/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Enzymologic/physiology , Methyltransferases/genetics , Mycobacterium tuberculosis/genetics , Oxygen/chemistry
13.
Clin Cancer Res ; 11(9): 3503-13, 2005 May 01.
Article in English | MEDLINE | ID: mdl-15867253

ABSTRACT

PURPOSE: Attempts to selectively initiate tumor cell death through inducible apoptotic pathways are increasingly being exploited as a potential anticancer strategy. Inhibition of NAD+ synthesis by a novel agent FK866 has been recently reported to induce apoptosis in human leukemia, hepatocarcinoma cells in vitro, and various types of tumor xenografts in vivo. In the present study, we used 1H-decoupled phosphorus (31P) magnetic resonance spectroscopy (MRS) to examine the metabolic changes associated with FK866 induced tumor cell death in a mouse mammary carcinoma. EXPERIMENTAL DESIGN: Induction of apoptosis in FK866-treated tumors was confirmed by histology and cytofluorometric analysis. FK866-induced changes in mammary carcinoma tumor metabolism in vivo were investigated using 1H-decoupled 31P MRS. To discern further the changes in metabolic profiles of tumors observed in vivo, high-resolution in vitro 1H-decoupled 31P MRS studies were carried out with perchloric acid extracts of mammary carcinoma tumors excised after similar treatments. In addition, the effects of FK866 on mammary carcinoma tumor growth and radiation sensitivity were studied. RESULTS: Treatment with FK866 induced a tumor growth delay and enhanced radiation sensitivity in mammary carcinoma tumors that was associated with significant increases in the 31P MR signal in the phosphomonoester region and a decrease in NAD+ levels, pH, and bioenergetic status. The 31P MRS of perchloric acid extracts of treated tumors identified the large unresolved signal in the phosphomonoester region as the resultant of resonances originating from intermediates of tumor glycolysis and guanylate synthesis in addition to alterations in pyridine nucleotide pools and phospholipid metabolism. CONCLUSION: The present results suggest that FK866 interferes with multiple biochemical pathways that contribute to the increased cell death (apoptosis) and subsequent radiation sensitivity observed in the mammary carcinoma that could be serially monitored by 31P MRS.


Subject(s)
Acrylamides/pharmacology , Apoptosis/drug effects , Magnetic Resonance Spectroscopy/methods , Mammary Neoplasms, Experimental/prevention & control , Piperidines/pharmacology , Acrylamides/therapeutic use , Animals , Annexin A5/metabolism , Cell Cycle/drug effects , Glycolysis/drug effects , Guanine Nucleotides/metabolism , Hydrogen-Ion Concentration/drug effects , Intracellular Membranes/drug effects , Intracellular Membranes/physiology , Male , Mammary Neoplasms, Experimental/metabolism , Mammary Neoplasms, Experimental/pathology , Membrane Potentials/drug effects , Mice , Mice, Inbred C3H , Mitochondria/drug effects , Mitochondria/physiology , Mitosis/drug effects , NAD/metabolism , NADP/metabolism , Neoplasm Transplantation , Nicotinamide Phosphoribosyltransferase , Pentosyltransferases/antagonists & inhibitors , Phospholipids/metabolism , Piperidines/therapeutic use , Protein Binding/drug effects , Time Factors
14.
J Org Chem ; 70(9): 3383-95, 2005 Apr 29.
Article in English | MEDLINE | ID: mdl-15844973

ABSTRACT

[structure: see text] As part of our ongoing anticancer vaccine program, we recently found that antibodies generated in response to the KH-1-KLH construct recognized not only KH-1 antigen but also the Lewis Y (Le(y)) antigen as well, with antibody titer levels much higher than those observed after immunization with individual Le(y)-KLH vaccine constructs. In an attempt to explore the structure-antigenic relationship of these carbohydrate epitopes, several analogues of both KH-1 and Le(y) were synthesized. A convergent synthetic approach to the analogues was designed on the basis of well-established glycal methodology, employing a minimum number of building blocks to generate competent antigens with high stereoselectivity and reasonable yield.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate/immunology , Cancer Vaccines/chemical synthesis , Lewis Blood Group Antigens/immunology , Adjuvants, Immunologic , Antigens, Tumor-Associated, Carbohydrate/chemistry , Cancer Vaccines/chemistry , Cancer Vaccines/immunology , Carbohydrate Sequence , Chemistry, Pharmaceutical/methods , Immunization , Molecular Structure , Oligosaccharides/chemistry , Oligosaccharides/immunology , Structure-Activity Relationship , Vaccines, Synthetic/chemistry , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...