Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chempluschem ; 89(6): e202300736, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38332534

ABSTRACT

The title radical R⋅, synthesized by reduction of the corresponding cation R+, is thermally stable up to ~380 K in the crystalline state under anaerobic conditions. With SQUID magnetometry, single-crystal and powder XRD, solid-state EPR and TG-DSC, reversible spin-Peierls transition between diamagnetic and paramagnetic states featuring ~10 K hysteretic loop is observed for R⋅ in the temperature range ~310-325 K; ΔH=~2.03 kJ mol-1 and ΔS=~6.23 J mol-1 K-1. The transition is accompanied by mechanical movement of the crystals, i. e., by thermosalient behavior. The low-temperature diamagnetic P-1 polymorph of R⋅ consists of R⋅2 π-dimers arranged in (…R⋅2…)n π-stacks; whereas the high-temperature paramagnetic P21/c polymorph, of uniform (…R⋅…)n π-stacks. With the XRD geometries, CASSCF and broken-symmetry DFT jointly suggest strong antiferromagnetic (AF) interactions within R⋅2 and weak between R⋅2 for the (…R⋅2…)n stacks; and moderate AF interactions between R⋅ for the (…R⋅…)n stacks. The fully hydrocarbon archetype of R⋅ does not reveal the aforementioned properties. Thus, the fluorinated 1,3,2-benzodithiazolyls pave a new pathway in the design and synthesis of metal-less magnetically-bistable materials.

2.
Molecules ; 27(7)2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35408606

ABSTRACT

To search for new suitable Pd precursors for MOCVD/ALD processes, the extended series of fluorinated palladium complexes [Pd(CH3CXCHCO(R))2] with ß-diketone [tfa-1,1,1-trifluoro-2,4-pentanedionato (1); pfpa-5,5,6,6,6-pentafluoro-2,4-hexanedionato (3); hfba-5,5,6,6,7,7,7-heptafluoro-2,4-heptanedionato (5)] and ß-iminoketone [i-tfa-1,1,1-trifluoro-2-imino-4-pentanonato (2); i-pfpa-5,5,6,6,6-pentafluoro-2-imino-4-hexanonato (4); i-hfba-5,5,6,6,7,7,7-heptafluoro-2-imino-4-heptanonato (6)] ligands were synthesized with 70-80% yields and characterized by a set of experimental (SXRD, XRD, IR, NMR spectroscopy, TG) and theoretical (DFT, Hirshfeld surface analysis) methods. Solutions of Pd ß-diketonates contained both cis and trans isomers, while only trans isomers were detected in the solutions of Pd ß-iminoketonates. The molecules 2-6 and new polymorphs of complexes 3 and 5 were arranged preferentially in stacks, and the distance between molecules in the stack generally increased with elongation of the fluorine chain in ligands. The H…F contacts were the main ones involved in the formation of packages of molecules 1-2, and C…F, F…F, NH…F contacts appeared in the structures of complexes 4-6. The stability of complexes and their polymorphs in the crystal phases were estimated from DFT calculations. The TG data showed that the volatility differences between Pd ß-iminoketonates and Pd ß-diketonates were minimized with the elongation of the fluorine chain in the ligands.


Subject(s)
Fluorine , Palladium , Crystallography, X-Ray , Ligands , Models, Molecular , Palladium/chemistry
3.
Nano Lett ; 19(3): 1570-1576, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30735045

ABSTRACT

For the first time, lonsdaleite-rich impact diamonds from one of the largest Popigai impact crater (Northern Siberia) with a high concentration of structural defects are investigated under hydrostatic compression up to 25 GPa. It is found that, depending on the nature of a sample, the bulk modulus for lonsdaleite experimentally obtained by X-ray diffraction in diamond-anvil cells is systematically lower and equal to 93.3-100.5% of the average values of the bulk moduli of a diamond matrix. Density functional theory calculations reveal possible coexistence of a number of diamond/lonsdaleite and twin diamond biphases. Among the different mutual configurations, separate inclusions of one lonsdaleite (001) plane per four diamond (111) demonstrate the lowest energy per carbon atom, suggesting a favorable formation of single-layer lonsdaleite (001) fragments inserted in the diamond matrix. Calculated formation energies and experimental diamond (311) and lonsdaleite (331) powder X-ray diffraction patterns indicate that all biphases could be formed under high-temperature, high-pressure conditions. Following the equation of states, the bulk modulus of the diamond (111)/lonsdaleite (001) biphase is the largest one among all bulk moduli, including pristine diamond and lonsdaleite.

SELECTION OF CITATIONS
SEARCH DETAIL