Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 608, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35105890

ABSTRACT

In obesity, signaling through the IRE1 arm of the unfolded protein response exerts both protective and harmful effects. Overexpression of the IRE1-regulated transcription factor XBP1s in liver or fat protects against obesity-linked metabolic deterioration. However, hyperactivation of IRE1 engages regulated IRE1-dependent decay (RIDD) and TRAF2/JNK pro-inflammatory signaling, which accelerate metabolic dysfunction. These pathologic IRE1-regulated processes have hindered efforts to pharmacologically harness the protective benefits of IRE1/XBP1s signaling in obesity-linked conditions. Here, we report the effects of a XBP1s-selective pharmacological IRE1 activator, IXA4, in diet-induced obese (DIO) mice. IXA4 transiently activates protective IRE1/XBP1s signaling in liver without inducing RIDD or TRAF2/JNK signaling. IXA4 treatment improves systemic glucose metabolism and liver insulin action through IRE1-dependent remodeling of the hepatic transcriptome that reduces glucose production and steatosis. IXA4-stimulated IRE1 activation also enhances pancreatic function. Our findings indicate that systemic, transient activation of IRE1/XBP1s signaling engenders multi-tissue benefits that integrate to mitigate obesity-driven metabolic dysfunction.


Subject(s)
Membrane Proteins/metabolism , Membrane Proteins/pharmacology , Obesity/metabolism , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/pharmacology , X-Box Binding Protein 1/metabolism , Animals , Fatty Liver/metabolism , Gene Expression Regulation , Glucose/metabolism , Homeostasis , Liver/metabolism , Membrane Proteins/genetics , Mice , Mice, Obese , Molecular Medicine , Obesity/genetics , Protein Serine-Threonine Kinases/genetics , Signal Transduction , Transcription Factors/metabolism , Unfolded Protein Response , X-Box Binding Protein 1/genetics
2.
Nat Chem Biol ; 16(9): 997-1005, 2020 09.
Article in English | MEDLINE | ID: mdl-32514184

ABSTRACT

Activity-based protein profiling (ABPP) has been used extensively to discover and optimize selective inhibitors of enzymes. Here, we show that ABPP can also be implemented to identify the converse-small-molecule enzyme activators. Using a kinetically controlled, fluorescence polarization-ABPP assay, we identify compounds that stimulate the activity of LYPLAL1-a poorly characterized serine hydrolase with complex genetic links to human metabolic traits. We apply ABPP-guided medicinal chemistry to advance a lead into a selective LYPLAL1 activator suitable for use in vivo. Structural simulations coupled to mutational, biochemical and biophysical analyses indicate that this compound increases LYPLAL1's catalytic activity likely by enhancing the efficiency of the catalytic triad charge-relay system. Treatment with this LYPLAL1 activator confers beneficial effects in a mouse model of diet-induced obesity. These findings reveal a new mode of pharmacological regulation for this large enzyme family and suggest that ABPP may aid discovery of activators for additional enzyme classes.


Subject(s)
Enzyme Activators/chemistry , Enzyme Activators/pharmacology , Lysophospholipase/metabolism , Small Molecule Libraries/pharmacology , Animals , Drug Discovery , Enzyme Activators/pharmacokinetics , Fluorescence Polarization , HEK293 Cells , High-Throughput Screening Assays/methods , Humans , Insulin Resistance , Lysophospholipase/chemistry , Lysophospholipase/genetics , Male , Metabolic Syndrome/drug therapy , Metabolic Syndrome/metabolism , Mice, Inbred C57BL , Mice, Obese , Molecular Dynamics Simulation , Molecular Structure , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacokinetics , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...