Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Model ; 26(8): 222, 2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32748063

ABSTRACT

We followed a comprehensive computational strategy to understand and eventually predict the structure-activity relationship of thirty-three 1,3-disubstituted imidazole [1,5-α] pyrazine derivatives described as ATP competitive inhibitors of the IGF-1 receptor related to Ewing sarcoma. The quantitative structure-activity relationship model showed that the inhibitory potency is correlated with the molar volume, a steric descriptor and the net charge calculated value on atom C1 (q1) and N4 (q4) of the pharmacophore, all of them appearing to give a positive contribution to the inhibitory activity. According to experimental and calculated values, the most potent compound would be 3-[4-(azetidin-2-ylmethyl) cyclohexyl]-1-[3-(benzyloxy) phenyl] imidazo [1,5-α]pyrazin-8-amine (compound 23). Docking was used to guess important residues involved in the ATP-competitive inhibitory activity. It was validated by 200 ns of molecular dynamics (MD) simulation using improved linear interaction energy (LIE) method. MD of previously preferred structures by docking shows that the most potent ligand could establish hydrogen bonds with the ATP-binding site of the receptor, and the Ser979 and Ser1059 residues contribute favourably to the binding stability of compound 23. MD simulation also gave arguments about the chemical structure of the compound 23 being able to fit in the ATP-binding pocket, expecting to remain stable into it during the entire simulation and allowing us to hint the significant contribution expected to be given by electrostatic and hydrophobic interactions to the ligand-receptor complex stability. This computational combined strategy here described could represent a useful and effective prime approach to guide the identification of tyrosine kinase inhibitors as new lead compounds.


Subject(s)
Adenosine Triphosphate/chemistry , Antineoplastic Agents/chemistry , Imidazoles/chemistry , Models, Molecular , Pyrazines/chemistry , Quantitative Structure-Activity Relationship , Receptor, IGF Type 1/chemistry , Animals , Antineoplastic Agents/pharmacology , Binding Sites , Binding, Competitive , Cell Line , Humans , Hydrophobic and Hydrophilic Interactions , Ligands , Mice , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Pyrazines/pharmacology , Receptor, IGF Type 1/antagonists & inhibitors , Reproducibility of Results
2.
Int J Mol Sci ; 21(7)2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32235485

ABSTRACT

Aceruloplasminemia is a rare autosomal recessive genetic disease characterized by mild microcytic anemia, diabetes, retinopathy, liver disease, and progressive neurological symptoms due to iron accumulation in pancreas, retina, liver, and brain. The disease is caused by mutations in the Ceruloplasmin (CP) gene that produce a strong reduction or absence of ceruloplasmin ferroxidase activity, leading to an impairment of iron metabolism. Most patients described so far are from Japan. Prompt diagnosis and therapy are crucial to prevent neurological complications since, once established, they are usually irreversible. Here, we describe the largest series of non-Japanese patients with aceruloplasminemia published so far, including 13 individuals from 11 families carrying 13 mutations in the CP gene (7 missense, 3 frameshifts, and 3 splicing mutations), 10 of which are novel. All missense mutations were studied by computational modeling. Clinical manifestations were heterogeneous, but anemia, often but not necessarily microcytic, was frequently the earliest one. This study confirms the clinical and genetic heterogeneity of aceruloplasminemia, a disease expected to be increasingly diagnosed in the Next-Generation Sequencing (NGS) era. Unexplained anemia with low transferrin saturation and high ferritin levels without inflammation should prompt the suspicion of aceruloplasminemia, which can be easily confirmed by low serum ceruloplasmin levels. Collaborative joint efforts are needed to better understand the pathophysiology of this potentially disabling disease.


Subject(s)
Ceruloplasmin/deficiency , Ceruloplasmin/genetics , Iron Metabolism Disorders/genetics , Neurodegenerative Diseases/genetics , Adult , Aged , Early Diagnosis , Female , Humans , Iron Metabolism Disorders/diagnosis , Iron Metabolism Disorders/pathology , Liver/pathology , Male , Middle Aged , Models, Molecular , Mutation , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/pathology
3.
Article in English | MEDLINE | ID: mdl-30386295

ABSTRACT

Kisspeptin receptors are G-Protein-Coupled Receptors that regulate GnRH synthesis and release in vertebrates. Here, we report the gene structure of two kisspeptin receptors (kissr2 and kissr3) in pejerrey fish. Genomic analysis exposed a gene structure with 5 exons and 4 introns for kissr2 and 6 exons and 5 introns for kissr3. Two alternative variants for both genes, named kissr2_v1 and _v2, and kissr3_v1 and v2, were revealed by gene expression analyses of several tissues. For both receptors, these variants were originated by alternative splicing retaining intron 3 and intron 4 for kissr2_v2 and kissr3_v2, respectively. In the case of kissr2, the intron retention introduced two stop codons leading to a putatively truncated protein whereas for kissr3, the intron retention produced a reading shift leading to a stop codon in exon 5. Modeling and structural analysis of Kissr2 and Kissr3 spliced variants revealed that truncation of the proteins may lead to non-functional proteins, as the structural elements missing are critical for receptor function. To understand the functional significance of splicing variants, the expression pattern for kissr2 was characterized on fish subjected to different diets. Fasting induced an up-regulation of kissr2_v1 in the hypothalamus, a brain region implicated in control of reproduction and food intake, with no expression of kissr2_v2. On the other hand, fasting did not elicit differential expression in testes and habenula. These results suggest that alternative splicing may play a role in regulating Kissr2 function in pejerrey.

4.
Sci Rep ; 8(1): 11102, 2018 07 23.
Article in English | MEDLINE | ID: mdl-30038319

ABSTRACT

The orphan G-protein coupled receptor 3 (GPR3) belongs to class A G-protein coupled receptors (GPCRs) and is highly expressed in central nervous system neurons. Among other functions, it is likely associated with neuron differentiation and maturation. Recently, GPR3 has also been linked to the production of Aß peptides in neurons. Unfortunately, the lack of experimental structural information for this receptor hampers a deep characterization of its function. Here, using an in-silico and in-vitro combined approach, we describe, for the first time, structural characteristics of GPR3 receptor underlying its function: the agonist binding site and the allosteric sodium binding cavity. We identified and validated by alanine-scanning mutagenesis the role of three functionally relevant residues: Cys2676.55, Phe1203.36 and Asp2.50. The latter, when mutated into alanine, completely abolished the constitutive and agonist-stimulated adenylate cyclase activity of GPR3 receptor by disrupting its sodium binding cavity. Interestingly, this is correlated with a decrease in Aß production in a model cell line. Taken together, these results suggest an important role of the allosteric sodium binding site for GPR3 activity and open a possible avenue for the modulation of Aß production in the Alzheimer's Disease.


Subject(s)
Amyloid beta-Peptides/metabolism , Receptors, G-Protein-Coupled/metabolism , Sodium/metabolism , Allosteric Regulation , HEK293 Cells , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutant Proteins/metabolism , Onium Compounds/metabolism , Point Mutation/genetics , Receptors, G-Protein-Coupled/chemistry , Signal Transduction , Structural Homology, Protein , beta-Arrestins/metabolism
5.
Front Mol Biosci ; 4: 63, 2017.
Article in English | MEDLINE | ID: mdl-28932739

ABSTRACT

Human G-protein coupled receptors (hGPCRs) constitute a large and highly pharmaceutically relevant membrane receptor superfamily. About half of the hGPCRs' family members are chemosensory receptors, involved in bitter taste and olfaction, along with a variety of other physiological processes. Hence these receptors constitute promising targets for pharmaceutical intervention. Molecular modeling has been so far the most important tool to get insights on agonist binding and receptor activation. Here we investigate both aspects by bioinformatics-based predictions across all bitter taste and odorant receptors for which site-directed mutagenesis data are available. First, we observe that state-of-the-art homology modeling combined with previously used docking procedures turned out to reproduce only a limited fraction of ligand/receptor interactions inferred by experiments. This is most probably caused by the low sequence identity with available structural templates, which limits the accuracy of the protein model and in particular of the side-chains' orientations. Methods which transcend the limited sampling of the conformational space of docking may improve the predictions. As an example corroborating this, we review here multi-scale simulations from our lab and show that, for the three complexes studied so far, they significantly enhance the predictive power of the computational approach. Second, our bioinformatics analysis provides support to previous claims that several residues, including those at positions 1.50, 2.50, and 7.52, are involved in receptor activation.

6.
Sci Rep ; 7(1): 5083, 2017 07 11.
Article in English | MEDLINE | ID: mdl-28698560

ABSTRACT

Clinical and experimental studies indicate that muscarinic acetylcholine receptors are potential pharmacological targets for the treatment of neurological diseases. Although these receptors have been described in human, bovine and rat cerebral microvascular tissue, a subtype functional characterization in mouse brain endothelium is lacking. Here, we show that all muscarinic acetylcholine receptors (M1-M5) are expressed in mouse brain microvascular endothelial cells. The mRNA expression of M2, M3, and M5 correlates with their respective protein abundance, but a mismatch exists for M1 and M4 mRNA versus protein levels. Acetylcholine activates calcium transients in brain endothelium via muscarinic, but not nicotinic, receptors. Moreover, although M1 and M3 are the most abundant receptors, only a small fraction of M1 is present in the plasma membrane and functions in ACh-induced Ca2+ signaling. Bioinformatic analyses performed on eukaryotic muscarinic receptors demonstrate a high degree of conservation of the orthosteric binding site and a great variability of the allosteric site. In line with previous studies, this result indicates muscarinic acetylcholine receptors as potential pharmacological targets in future translational studies. We argue that research on drug development should especially focus on the allosteric binding sites of the M1 and M3 receptors.


Subject(s)
Brain/blood supply , Endothelium, Vascular/metabolism , Microvessels/metabolism , Receptors, Muscarinic/metabolism , Acetylcholine/pharmacology , Allosteric Site , Animals , Binding Sites , Calcium Signaling/drug effects , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Endothelium, Vascular/cytology , Mice, Inbred BALB C , Receptors, Muscarinic/chemistry , Receptors, Nicotinic/metabolism
7.
Am J Hematol ; 92(6): 562-568, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28335084

ABSTRACT

Hereditary Hemochromatosis (HH) is a genetically heterogeneous disorder caused by mutations in at least five different genes (HFE, HJV, TFR2, SLC40A1, HAMP) involved in the production or activity of the liver hormone hepcidin, a key regulator of systemic iron homeostasis. Nevertheless, patients with an HH-like phenotype that remains completely/partially unexplained despite extensive sequencing of known genes are not infrequently seen at referral centers, suggesting a role of still unknown genetic factors. A compelling candidate is Bone Morphogenetic Protein 6 (BMP6), which acts as a major activator of the BMP-SMAD signaling pathway, ultimately leading to the upregulation of hepcidin gene transcription. A recent seminal study by French authors has described three heterozygous missense mutations in BMP6 associated with mild to moderate late-onset iron overload (IO). Using an updated next-generation sequencing (NGS)-based genetic test in IO patients negative for the classical HFE p.Cys282Tyr mutation, we found three BMP6 heterozygous missense mutations in four patients from three different families. One mutation (p.Leu96Pro) has already been described and proven to be functional. The other two (p.Glu112Gln, p.Arg257His) were novel, and both were located in the pro-peptide domain known to be crucial for appropriate BMP6 processing and secretion. In silico modeling also showed results consistent with their pathogenetic role. The patients' clinical phenotypes were similar to that of other patients with BMP6-related IO recently described. Our results independently add further evidence to the role of BMP6 mutations as likely contributing factors to late-onset moderate IO unrelated to mutations in the established five HH genes.


Subject(s)
Bone Morphogenetic Protein 6/genetics , Iron Overload/etiology , Mutation , Protein Interaction Domains and Motifs/genetics , Adult , Aged , Amino Acid Substitution , Biomarkers , Bone Morphogenetic Protein 6/chemistry , Codon , Female , Genetic Predisposition to Disease , Hemochromatosis/complications , Hemochromatosis/genetics , Hepcidins/blood , Hepcidins/metabolism , Heterozygote , Humans , Iron Overload/diagnosis , Magnetic Resonance Imaging/methods , Male , Middle Aged , Models, Molecular , Phenotype , Protein Conformation
8.
Curr Genomics ; 14(5): 324-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-24403851

ABSTRACT

Transmembrane proteins allow cells to extensively communicate with the external world in a very accurate and specific way. They form principal nodes in several signaling pathways and attract large interest in therapeutic intervention, as the majority pharmaceutical compounds target membrane proteins. Thus, according to the current genome annotation methods, a detailed structural/functional characterization at the protein level of each of the elements codified in the genome is also required. The extreme difficulty in obtaining high-resolution three-dimensional structures, calls for computational approaches. Here we review to which extent the efforts made in the last few years, combining the structural characterization of membrane proteins with protein bioinformatics techniques, could help describing membrane proteins at a genome-wide scale. In particular we analyze the use of comparative modeling techniques as a way of overcoming the lack of high-resolution three-dimensional structures in the human membrane proteome.

SELECTION OF CITATIONS
SEARCH DETAIL
...