Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Eng Life Sci ; 22(2): 100-114, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35140557

ABSTRACT

Mammalian cells are commonly used to produce recombinant protein therapeutics, but suffer from a high cost per mg of protein produced. There is therefore great interest in improving protein yields to reduce production cost. We present an entirely novel approach to reach this goal through direct engineering of the cellular translation machinery by introducing the R98S point mutation in the catalytically essential ribosomal protein L10 (RPL10-R98S). Our data support that RPL10-R98S enhances translation levels and fidelity and reduces proteasomal activity in lymphoid Ba/F3 and Jurkat cell models. In HEK293T cells cultured in chemically defined medium, knock-in of RPL10-R98S was associated with a 1.7- to 2.5-fold increased production of four transiently expressed recombinant proteins and 1.7-fold for one out of two stably expressed proteins. In CHO-S cells, eGFP reached a 2-fold increased expression under stable but not transient conditions, but there was no production benefit for monoclonal antibodies. The RPL10-R98S associated production gain thus depends on culture conditions, cell type, and the nature of the expressed protein. Our study demonstrates the potential for using a ribosomal protein mutation for pharmaceutical protein production gains, and further research on how various factors influence RPL10-R98S phenotypes can maximize its exploitability for the mammalian protein production industry.

2.
Nucleic Acids Res ; 48(3): 1013-1028, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31350888

ABSTRACT

Ribosomopathies are diseases caused by defects in ribosomal constituents or in factors with a role in ribosome assembly. Intriguingly, congenital ribosomopathies display a paradoxical transition from early symptoms due to cellular hypo-proliferation to an elevated cancer risk later in life. Another association between ribosome defects and cancer came into view after the recent discovery of somatic mutations in ribosomal proteins and rDNA copy number changes in a variety of tumor types, giving rise to somatic ribosomopathies. Despite these clear connections between ribosome defects and cancer, the molecular mechanisms by which defects in this essential cellular machinery are oncogenic only start to emerge. In this review, the impact of ribosomal defects on the cellular function and their mechanisms of promoting oncogenesis are described. In particular, we discuss the emerging hallmarks of ribosomopathies such as the appearance of 'onco-ribosomes' that are specialized in translating oncoproteins, dysregulation of translation-independent extra-ribosomal functions of ribosomal proteins, rewired cellular protein and energy metabolism, and extensive oxidative stress leading to DNA damage. We end by integrating these findings in a model that can provide an explanation how ribosomopathies could lead to the transition from hypo- to hyper-proliferation in bone marrow failure syndromes with elevated cancer risk.


Subject(s)
Carcinogenesis/genetics , Neoplasms/genetics , Ribosomes/metabolism , Bone Marrow Failure Disorders/pathology , Carcinogenesis/metabolism , Cell Proliferation , Humans , Mitochondria/genetics , Mutation , Neoplasms/metabolism , Protein Biosynthesis , RNA, Ribosomal/genetics , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/chemistry
3.
Cells ; 8(10)2019 10 05.
Article in English | MEDLINE | ID: mdl-31590378

ABSTRACT

Subverting the conventional concept of "the" ribosome, a wealth of information gleaned from recent studies is revealing a much more diverse and dynamic ribosomal reality than has traditionally been thought possible. A diverse array of researchers is collectively illuminating a universe of heterogeneous and adaptable ribosomes harboring differences in composition and regulatory capacity: These differences enable specialization. The expanding universe of ribosomes not only comprises an incredible richness in ribosomal specialization between species, but also within the same tissues and even cells. In this review, we discuss ribosomal heterogeneity and speculate how the emerging understanding of the ribosomal repertoire is impacting the biological sciences today. Targeting pathogen-specific and pathological "diseased" ribosomes promises to provide new treatment options for patients, and potential applications for "designer ribosomes" are within reach. Our deepening understanding of and ability to manipulate the ribosome are establishing both the technological and theoretical foundations for major advances for the 21st century and beyond.


Subject(s)
Ribosomes , Animals , Humans , Ribosomes/chemistry , Ribosomes/metabolism , Ribosomes/physiology , Species Specificity
4.
Nat Commun ; 10(1): 2542, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31186416

ABSTRACT

Somatic ribosomal protein mutations have recently been described in cancer, yet their impact on cellular transcription and translation remains poorly understood. Here, we integrate mRNA sequencing, ribosome footprinting, polysomal RNA sequencing and mass spectrometry datasets from a mouse lymphoid cell model to characterize the T-cell acute lymphoblastic leukemia (T-ALL) associated ribosomal RPL10 R98S mutation. Surprisingly, RPL10 R98S induces changes in protein levels primarily through transcriptional rather than translation efficiency changes. Phosphoserine phosphatase (PSPH), encoding a key serine biosynthesis enzyme, was the only gene with elevated transcription and translation leading to protein overexpression. PSPH upregulation is a general phenomenon in T-ALL patient samples, associated with elevated serine and glycine levels in xenograft mice. Reduction of PSPH expression suppresses proliferation of T-ALL cell lines and their capacity to expand in mice. We identify ribosomal mutation driven induction of serine biosynthesis and provide evidence supporting dependence of T-ALL cells on PSPH.


Subject(s)
Glycine/metabolism , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Serine/metabolism , Animals , Cell Line , Gene Expression Profiling , Mice , Phosphoric Monoester Hydrolases , Polyribosomes/genetics , Polyribosomes/metabolism , Protein Biosynthesis , RNA, Messenger/genetics , Ribosomal Protein L10 , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Sequence Analysis, RNA
5.
Cells ; 8(3)2019 03 11.
Article in English | MEDLINE | ID: mdl-30862070

ABSTRACT

Ribosomopathies are congenital diseases with defects in ribosome assembly and are characterized by elevated cancer risks. Additionally, somatic mutations in ribosomal proteins have recently been linked to a variety of cancers. Despite a clear correlation between ribosome defects and cancer, the molecular mechanisms by which these defects promote tumorigenesis are unclear. In this review, we focus on the emerging mechanisms that link ribosomal defects in ribosomopathies to cancer progression. This includes functional "onco-specialization" of mutant ribosomes, extra-ribosomal consequences of mutations in ribosomal proteins and ribosome assembly factors, and effects of ribosomal mutations on cellular stress and metabolism. We integrate some of these recent findings in a single model that can partially explain the paradoxical transition from hypo- to hyperproliferation phenotypes, as observed in ribosomopathies. Finally, we discuss the current and potential strategies, and the associated challenges for therapeutic intervention in ribosome-mutant diseases.


Subject(s)
Neoplasms/metabolism , Ribosomes/metabolism , Animals , Carcinogenesis/metabolism , Carcinogenesis/pathology , Humans , Models, Biological , Organelle Biogenesis
6.
Leukemia ; 33(4): 1055-1062, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30850735

ABSTRACT

Following the publication of this article, the authors noted that Dr Laura Fancello was not listed among the authors. The corrected author list is given below. Additionally, the following was not included in the author contribution statement: 'L.F. analyzed RNA sequencing data'.

7.
Leukemia ; 33(2): 319-332, 2019 02.
Article in English | MEDLINE | ID: mdl-29930300

ABSTRACT

The R98S mutation in ribosomal protein L10 (RPL10 R98S) affects 8% of pediatric T-cell acute lymphoblastic leukemia (T-ALL) cases, and was previously described to impair cellular proliferation. The current study reveals that RPL10 R98S cells accumulate reactive oxygen species which promotes mitochondrial dysfunction and reduced ATP levels, causing the proliferation defect. RPL10 R98S mutant leukemia cells can survive high oxidative stress levels via a specific increase of IRES-mediated translation of the anti-apoptotic factor B-cell lymphoma 2 (BCL-2), mediating BCL-2 protein overexpression. RPL10 R98S selective sensitivity to the clinically available Bcl-2 inhibitor Venetoclax (ABT-199) was supported by suppression of splenomegaly and the absence of human leukemia cells in the blood of T-ALL xenografted mice. These results shed new light on the oncogenic function of ribosomal mutations in cancer, provide a novel mechanism for BCL-2 upregulation in leukemia, and highlight BCL-2 inhibition as a novel therapeutic opportunity in RPL10 R98S defective T-ALL.


Subject(s)
Internal Ribosome Entry Sites , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Biosynthesis , Proto-Oncogene Proteins c-bcl-2/metabolism , Ribosomal Proteins/genetics , Ribosomes/metabolism , Animals , Gene Expression Regulation, Leukemic , Humans , Male , Mice , Mice, Inbred NOD , Oxidative Stress/drug effects , Phosphorylation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , Ribosomal Protein L10 , Ribosomal Proteins/metabolism , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
8.
Cancer Res ; 79(2): 320-327, 2019 01 15.
Article in English | MEDLINE | ID: mdl-30482776

ABSTRACT

Ribosomopathies are congenital disorders caused by mutations in ribosomal proteins (RP) or assembly factors and are characterized by cellular hypoproliferation at an early stage. Paradoxically, many of these disorders have an elevated risk to progress to hyperproliferative cancer at a later stage. In addition, somatic RP mutations have recently been identified in various cancer types, for example, the recurrent RPL10-R98S mutation in T-cell acute lymphoblastic leukemia (T-ALL) and RPS15 mutations in chronic lymphocytic leukemia (CLL). We previously showed that RPL10-R98S promotes expression of oncogenes, but also induces a proliferative defect due to elevated oxidative stress. In this study, we demonstrate that this proliferation defect is eventually rescued by RPL10-R98S mouse lymphoid cells that acquire 5-fold more secondary mutations than RPL10-WT cells. The presence of RPL10-R98S and other RP mutations also correlated with a higher mutational load in patients with T-ALL, with an enrichment in NOTCH1-activating lesions. RPL10-R98S-associated cellular oxidative stress promoted DNA damage and impaired cell growth. Expression of NOTCH1 eliminated these phenotypes in RPL10-R98S cells, in part via downregulation of PKC-θ, with no effect on RPL10-WT cells. Patients with RP-mutant CLL also demonstrated a higher mutational burden, enriched for mutations that may diminish oxidative stress. We propose that oxidative stress due to ribosome dysfunction causes hypoproliferation and cellular insufficiency in ribosomopathies and RP-mutant cancer. This drives surviving cells, potentiated by genomic instability, to acquire rescuing mutations, which ultimately promote transition to hyperproliferation. SIGNIFICANCE: Ribosomal lesions cause oxidative stress and increase mutagenesis, promoting acquisition of rescuing mutations that stimulate proliferation.


Subject(s)
Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Ribosomes/genetics , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Humans , Male , Mice , Mice, Transgenic , Mutagenesis , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Receptor, Notch1/genetics , Receptor, Notch1/metabolism , Ribosomal Protein L10 , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Ribosomes/pathology
9.
Oncotarget ; 9(81): 35205-35206, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30443288
10.
Hemasphere ; 2(5): e95, 2018 10.
Article in English | MEDLINE | ID: mdl-30887003
11.
Oncotarget ; 8(52): 89427-89428, 2017 Oct 27.
Article in English | MEDLINE | ID: mdl-29163758
12.
Cancer Discov ; 7(10): 1069-1087, 2017 10.
Article in English | MEDLINE | ID: mdl-28923911

ABSTRACT

A wealth of novel findings, including congenital ribosomal mutations in ribosomopathies and somatic ribosomal mutations in various cancers, have significantly increased our understanding of the relevance of ribosomes in oncogenesis. Here, we explore the growing list of mechanisms by which the ribosome is involved in carcinogenesis-from the hijacking of ribosomes by oncogenic factors and dysregulated translational control, to the effects of mutations in ribosomal components on cellular metabolism. Of clinical importance, the recent success of RNA polymerase inhibitors highlights the dependence on "onco-ribosomes" as an Achilles' heel of cancer cells and a promising target for further therapeutic intervention.Significance: The recent discovery of somatic mutations in ribosomal proteins in several cancers has strengthened the link between ribosome defects and cancer progression, while also raising the question of which cellular mechanisms such defects exploit. Here, we discuss the emerging molecular mechanisms by which ribosomes support oncogenesis, and how this understanding is driving the design of novel therapeutic strategies. Cancer Discov; 7(10); 1069-87. ©2017 AACR.


Subject(s)
Mutation , Neoplasms/genetics , Ribosomal Proteins/genetics , Animals , Disease Progression , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease , Humans , Neoplasms/metabolism , Ribosomal Proteins/metabolism
13.
Blood ; 125(9): 1377-82, 2015 Feb 26.
Article in English | MEDLINE | ID: mdl-25575543

ABSTRACT

Ribosomopathies are largely congenital diseases linked to defects in ribosomal proteins or biogenesis factors. Some of these disorders are characterized by hypoproliferative phenotypes such as bone marrow failure and anemia early in life, followed by elevated cancer risks later in life. This transition from hypo- to hyperproliferation presents an intriguing paradox in the field of hematology known as "Dameshek's riddle." Recent cancer sequencing studies also revealed somatically acquired mutations and deletions in ribosomal proteins in T-cell acute lymphoblastic leukemia and solid tumors, further extending the list of ribosomopathies and strengthening the association between ribosomal defects and oncogenesis. In this perspective, we summarize and comment on recent findings in the field of ribosomopathies. We explain how ribosomopathies may provide clues to help explain Dameshek's paradox and highlight some of the open questions and challenges in the field.


Subject(s)
Cell Proliferation/genetics , Neoplasms/pathology , Ribosomal Proteins/genetics , Ribosomes/genetics , Ribosomes/pathology , Animals , Humans , Neoplasms/genetics , Ribosomes/metabolism
14.
Nature ; 512(7514): 265-9, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25043019

ABSTRACT

Programmed -1 ribosomal frameshift (-1 PRF) signals redirect translating ribosomes to slip back one base on messenger RNAs. Although well characterized in viruses, how these elements may regulate cellular gene expression is not understood. Here we describe a -1 PRF signal in the human mRNA encoding CCR5, the HIV-1 co-receptor. CCR5 mRNA-mediated -1 PRF is directed by an mRNA pseudoknot, and is stimulated by at least two microRNAs. Mapping the mRNA-miRNA interaction suggests that formation of a triplex RNA structure stimulates -1 PRF. A -1 PRF event on the CCR5 mRNA directs translating ribosomes to a premature termination codon, destabilizing it through the nonsense-mediated mRNA decay pathway. At least one additional mRNA decay pathway is also involved. Functional -1 PRF signals that seem to be regulated by miRNAs are also demonstrated in mRNAs encoding six other cytokine receptors, suggesting a novel mode through which immune responses may be fine-tuned in mammalian cells.


Subject(s)
Frameshifting, Ribosomal/genetics , MicroRNAs/genetics , Nonsense Mediated mRNA Decay , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, CCR5/genetics , Amino Acid Sequence , Base Sequence , Binding Sites , Cell Survival , Codon, Nonsense/genetics , HeLa Cells , Humans , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Messenger/chemistry , Receptors, Interleukin/genetics , Regulatory Sequences, Ribonucleic Acid , Ribosomes/metabolism
15.
Proc Natl Acad Sci U S A ; 111(15): 5640-5, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24706786

ABSTRACT

Ribosomopathies are a class of diseases caused by mutations that affect the biosynthesis and/or functionality of the ribosome. Although they initially present as hypoproliferative disorders, such as anemia, patients have elevated risk of hyperproliferative disease (cancer) by midlife. Here, this paradox is explored using the rpL10-R98S (uL16-R98S) mutant yeast model of the most commonly identified ribosomal mutation in acute lymphoblastic T-cell leukemia. This mutation causes a late-stage 60S subunit maturation failure that targets mutant ribosomes for degradation. The resulting deficit in ribosomes causes the hypoproliferative phenotype. This 60S subunit shortage, in turn, exerts pressure on cells to select for suppressors of the ribosome biogenesis defect, allowing them to reestablish normal levels of ribosome production and cell proliferation. However, suppression at this step releases structurally and functionally defective ribosomes into the translationally active pool, and the translational fidelity defects of these mutants culminate in destabilization of selected mRNAs and shortened telomeres. We suggest that in exchange for resolving their short-term ribosome deficits through compensatory trans-acting suppressors, cells are penalized in the long term by changes in gene expression that ultimately undermine cellular homeostasis.


Subject(s)
Carcinogenesis/genetics , Models, Molecular , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Ribosomal Proteins/genetics , Ribosome Subunits, Large, Eukaryotic/pathology , Ribosomes/genetics , Ribosomes/physiology , Ribosomal Protein L10 , Ribosomal Proteins/chemistry , Ribosomes/chemistry , Saccharomyces cerevisiae
16.
Nucleic Acids Res ; 42(3): 2049-63, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24214990

ABSTRACT

Ribosomes transit between two conformational states, non-rotated and rotated, through the elongation cycle. Here, we present evidence that an internal loop in the essential yeast ribosomal protein rpL10 is a central controller of this process. Mutations in this loop promote opposing effects on the natural equilibrium between these two extreme conformational states. rRNA chemical modification analyses reveals allosteric interactions involved in coordinating intersubunit rotation originating from rpL10 in the core of the large subunit (LSU) through both subunits, linking all the functional centers of the ribosome. Mutations promoting rotational disequilibria showed catalytic, biochemical and translational fidelity defects. An rpL3 mutation promoting opposing structural and biochemical effects, suppressed an rpL10 mutant, re-establishing rotational equilibrium. The rpL10 loop is also involved in Sdo1p recruitment, suggesting that rotational status is important for ensuring late-stage maturation of the LSU, supporting a model in which pre-60S subunits undergo a 'test drive' before final maturation.


Subject(s)
Ribosomal Proteins/chemistry , Ribosomes/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Allosteric Regulation , Ligands , Mutation , Peptidyl Transferases/metabolism , Protein Biosynthesis , RNA, Ribosomal/chemistry , Ribosomal Protein L10 , Ribosomal Proteins/genetics , Ribosomes/metabolism , Rotation , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...