Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Front Immunol ; 14: 1257722, 2023.
Article in English | MEDLINE | ID: mdl-37954609

ABSTRACT

Coxiella burnetii is an important zoonotic bacterial pathogen of global importance, causing the disease Q fever in a wide range of animal hosts. Ruminant livestock, in particular sheep and goats, are considered the main reservoir of human infection. Vaccination is a key control measure, and two commercial vaccines based on formalin-inactivated C. burnetii bacterins are currently available for use in livestock and humans. However, their deployment is limited due to significant reactogenicity in individuals previously sensitized to C. burnetii antigens. Furthermore, these vaccines interfere with available serodiagnostic tests which are also based on C. burnetii bacterin antigens. Defined subunit antigen vaccines offer significant advantages, as they can be engineered to reduce reactogenicity and co-designed with serodiagnostic tests to allow discrimination between vaccinated and infected individuals. This study aimed to investigate the diversity of antibody responses to C. burnetii vaccination and/or infection in cattle, goats, humans, and sheep through genome-wide linear epitope mapping to identify candidate vaccine and diagnostic antigens within the predicted bacterial proteome. Using high-density peptide microarrays, we analyzed the seroreactivity in 156 serum samples from vaccinated and infected individuals to peptides derived from 2,092 open-reading frames in the C. burnetii genome. We found significant diversity in the antibody responses within and between species and across different types of C. burnetii exposure. Through the implementation of three different vaccine candidate selection methods, we identified 493 candidate protein antigens for protein subunit vaccine design or serodiagnostic evaluation, of which 65 have been previously described. This is the first study to investigate multi-species seroreactivity against the entire C. burnetii proteome presented as overlapping linear peptides and provides the basis for the selection of antigen targets for next-generation Q fever vaccines and diagnostic tests.


Subject(s)
Coxiella burnetii , Q Fever , Humans , Animals , Sheep , Cattle , Coxiella burnetii/genetics , Q Fever/prevention & control , Q Fever/veterinary , Antibody Formation , Epitopes , Proteome , Epitope Mapping , Vaccination/veterinary , Ruminants , Goats , Peptides , Bacterial Vaccines
2.
Front Immunol ; 14: 1267638, 2023.
Article in English | MEDLINE | ID: mdl-37809089

ABSTRACT

Introduction: Zika virus (ZIKV) infection during pregnancy results in a spectrum of birth defects and neurodevelopmental deficits in prenatally exposed infants, with no clear understanding of why some pregnancies are more severely affected. Differential control of maternal ZIKV infection may explain the spectrum of adverse outcomes. Methods: Here, we investigated whether the magnitude and breadth of the maternal ZIKV-specific antibody response is associated with better virologic control using a rhesus macaque model of prenatal ZIKV infection. We inoculated 18 dams with an Asian-lineage ZIKV isolate (PRVABC59) at 30-45 gestational days. Plasma vRNA and infectious virus kinetics were determined over the course of pregnancy, as well as vRNA burden in the maternal-fetal interface (MFI) at delivery. Binding and neutralizing antibody assays were performed to determine the magnitude of the ZIKV-specific IgM and IgG antibody responses throughout pregnancy, along with peptide microarray assays to define the breadth of linear ZIKV epitopes recognized. Results: Dams with better virologic control (n= 9) cleared detectable infectious virus and vRNA from the plasma by 7 days post-infection (DPI) and had a lower vRNA burden in the MFI at delivery. In comparison, dams with worse virologic control (n= 9) still cleared detectable infectious virus from the plasma by 7 DPI but had vRNA that persisted longer, and had higher vRNA burden in the MFI at delivery. The magnitudes of the ZIKV-specific antibody responses were significantly lower in the dams with better virologic control, suggesting that higher antibody titers are not associated with better control of ZIKV infection. Additionally, the breadth of the ZIKV linear epitopes recognized did not differ between the dams with better and worse control of ZIKV infection. Discussion: Thus, the magnitude and breadth of the maternal antibody responses do not seem to impact maternal virologic control. This may be because control of maternal infection is determined in the first 7 DPI, when detectable infectious virus is present and before robust antibody responses are generated. However, the presence of higher ZIKV-specific antibody titers in dams with worse virologic control suggests that these could be used as a biomarker of poor maternal control of infection and should be explored further.


Subject(s)
Pregnancy Complications, Infectious , Zika Virus Infection , Zika Virus , Pregnancy , Female , Animals , Humans , Macaca mulatta , Epitopes
3.
J Biol Chem ; 298(1): 101518, 2022 01.
Article in English | MEDLINE | ID: mdl-34942146

ABSTRACT

Understanding the core replication complex of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential to the development of novel coronavirus-specific antiviral therapeutics. Among the proteins required for faithful replication of the SARS-CoV-2 genome are nonstructural protein 14 (NSP14), a bifunctional enzyme with an N-terminal 3'-to-5' exoribonuclease (ExoN) and a C-terminal N7-methyltransferase, and its accessory protein, NSP10. The difficulty in producing pure and high quantities of the NSP10/14 complex has hampered the biochemical and structural study of these important proteins. We developed a straightforward protocol for the expression and purification of both NSP10 and NSP14 from Escherichia coli and for the in vitro assembly and purification of a stoichiometric NSP10/14 complex with high yields. Using these methods, we observe that NSP10 provides a 260-fold increase in kcat/Km in the exoribonucleolytic activity of NSP14 and enhances protein stability. We also probed the effect of two small molecules on NSP10/14 activity, remdesivir monophosphate and the methyltransferase inhibitor S-adenosylhomocysteine. Our analysis highlights two important factors for drug development: first, unlike other exonucleases, the monophosphate nucleoside analog intermediate of remdesivir does not inhibit NSP14 activity; and second, S-adenosylhomocysteine modestly activates NSP14 exonuclease activity. In total, our analysis provides insights for future structure-function studies of SARS-CoV-2 replication fidelity for the treatment of coronavirus disease 2019.


Subject(s)
Antiviral Agents/pharmacology , Exoribonucleases/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/metabolism , Enzyme Activation , Virus Replication/drug effects
5.
Eur Spine J ; 30(10): 2975-2982, 2021 10.
Article in English | MEDLINE | ID: mdl-33713175

ABSTRACT

PURPOSE: This study was conducted to investigate the reaction times and symmetry index (SI) of the bilateral trunk and limb muscles between control subjects and subjects with low back pain (LBP) that persisted for two months or longer. METHODS: Fifty-seven right limb dominant subjects (31 healthy control subjects and 26 subjects with LBP) participated in this study. The subjects were exposed to a slip perturbation (0.24 m/sec velocity for 1.20 cm), which caused them to move forward for 0.10 s in standing while holding a tray. The electromyography (EMG) electrodes were placed on the bilateral erector spinae (ES), rectus abdominis (RA), rectus femoris, hamstring, tibialis anterior, gastrocnemius, biceps brachii (BB), and triceps brachii muscles. The reaction times were analyzed, and the SI was used to compare the bilateral trunk and limb muscles for the degree of asymmetry between groups. RESULTS: The ES reaction time was significantly delayed in the control group (0.33 ± 0.22 vs. 0.22 ± 0.17; t = 2.25, p = 0.03). The SI of reaction times was significantly different on the RA (t = -2.28, p = 0.03), ES (t = -2.36, p = 0.04), and BB (t = -2.15, p = 0.04) muscles between groups. CONCLUSION: The delayed non-dominant ES reaction time might indicate a freedom of pain recurrence in the control group. Although the asymmetry increased on the RA and BB muscles in the LBP group, it decreased on the ES muscle. The asymmetries on the trunk and BB muscles were evident in the LBP group. The asymmetrical reactions in the arm-trunk muscles need to be considered for rehabilitation strategies.


Subject(s)
Low Back Pain , Humans , Low Back Pain/diagnosis , Paraspinal Muscles , Posture , Reaction Time , Torso
6.
Commun Biol ; 4(1): 225, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33580175

ABSTRACT

Serodiagnosis of SARS-CoV-2 infection is impeded by immunological cross-reactivity among the human coronaviruses (HCoVs): SARS-CoV-2, SARS-CoV-1, MERS-CoV, OC43, 229E, HKU1, and NL63. Here we report the identification of humoral immune responses to SARS-CoV-2 peptides that may enable discrimination between exposure to SARS-CoV-2 and other HCoVs. We used a high-density peptide microarray and plasma samples collected at two time points from 50 subjects with SARS-CoV-2 infection confirmed by qPCR, samples collected in 2004-2005 from 11 subjects with IgG antibodies to SARS-CoV-1, 11 subjects with IgG antibodies to other seasonal human coronaviruses (HCoV), and 10 healthy human subjects. Through statistical modeling with linear regression and multidimensional scaling we identified specific peptides that were reassembled to identify 29 linear SARS-CoV-2 epitopes that were immunoreactive with plasma from individuals who had asymptomatic, mild or severe SARS-CoV-2 infections. Larger studies will be required to determine whether these peptides may be useful in serodiagnostics.


Subject(s)
COVID-19/immunology , COVID-19/virology , Peptide Mapping , Peptides/immunology , SARS-CoV-2/physiology , Amino Acid Sequence , Animals , COVID-19/blood , Chiroptera , Epitopes/immunology , Humans , Immunoglobulin G/metabolism , Peptides/chemistry , Proteome/metabolism
7.
DNA Repair (Amst) ; 93: 102916, 2020 09.
Article in English | MEDLINE | ID: mdl-33087282

ABSTRACT

Maintenance and replication of the mitochondrial genome (mtDNA) is essential to mitochondrial function and eukaryotic energy production through the electron transport chain. mtDNA is replicated by a core set of proteins: Pol γ, Twinkle, and the single-stranded DNA binding protein. Fewer pathways exist for repair of mtDNA than nuclear DNA, and unrepaired damage to mtDNA may accumulate and lead to dysfunctional mitochondria. The mitochondrial genome is susceptible to damage by both endogenous and exogenous sources. Missense mutations to the nuclear genes encoding the core mtDNA replisome (POLG, POLG2, TWNK, and SSBP1) cause changes to the biochemical functions of their protein products. These protein variants can damage mtDNA and perturb oxidative phosphorylation. Ultimately, these mutations cause a diverse set of diseases that can affect virtually every system in the body. Here, we briefly review the mechanisms of mtDNA damage and the clinical consequences of disease variants of the core mtDNA replisome.


Subject(s)
DNA Helicases/genetics , DNA Polymerase gamma/genetics , DNA-Binding Proteins/genetics , DNA-Directed DNA Polymerase/genetics , Mitochondrial Diseases/genetics , Mitochondrial Proteins/genetics , Mutation , DNA Helicases/metabolism , DNA Polymerase gamma/metabolism , DNA Replication , DNA, Mitochondrial/metabolism , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/metabolism , Genome, Mitochondrial , Humans , Mitochondria/metabolism , Mitochondrial Proteins/metabolism
8.
Nat Commun ; 11(1): 3196, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32581215

ABSTRACT

T-cell bispecific antibodies (TCBs) crosslink tumor and T-cells to induce tumor cell killing. While TCBs are very potent, on-target off-tumor toxicity remains a challenge when selecting targets. Here, we describe a protease-activated anti-folate receptor 1 TCB (Prot-FOLR1-TCB) equipped with an anti-idiotypic anti-CD3 mask connected to the anti-CD3 Fab through a tumor protease-cleavable linker. The potency of this Prot- FOLR1-TCB is recovered following protease-cleavage of the linker releasing the anti-idiotypic anti-CD3 scFv. In vivo, the Prot-FOLR1-TCB mediates antitumor efficacy comparable to the parental FOLR1-TCB whereas a noncleavable control Prot-FOLR1-TCB is inactive. In contrast, killing of bronchial epithelial and renal cortical cells with low FOLR1 expression is prevented compared to the parental FOLR1-TCB. The findings are confirmed for mesothelin as alternative tumor antigen. Thus, masking the anti-CD3 Fab fragment with an anti-idiotypic mask and cleavage of the mask by tumor-specific proteases can be applied to enhance specificity and safety of TCBs.


Subject(s)
Antibodies, Bispecific/immunology , Antibodies, Bispecific/metabolism , CD3 Complex/immunology , Folate Receptor 1/immunology , Peptide Hydrolases/metabolism , T-Lymphocytes/immunology , Animals , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/therapeutic use , Cell Line, Tumor , GPI-Linked Proteins/immunology , Humans , Immunotherapy , Lymphocyte Activation/drug effects , Mesothelin , Mice , Molecular Targeted Therapy , Xenograft Model Antitumor Assays
9.
J Biol Chem ; 295(51): 17802-17815, 2020 12 18.
Article in English | MEDLINE | ID: mdl-33454015

ABSTRACT

Faithful replication of the mitochondrial genome is carried out by a set of key nuclear-encoded proteins. DNA polymerase γ is a core component of the mtDNA replisome and the only replicative DNA polymerase localized to mitochondria. The asynchronous mechanism of mtDNA replication predicts that the replication machinery encounters dsDNA and unique physical barriers such as structured genes, G-quadruplexes, and other obstacles. In vitro experiments here provide evidence that the polymerase γ heterotrimer is well-adapted to efficiently synthesize DNA, despite the presence of many naturally occurring roadblocks. However, we identified a specific G-quadruplex-forming sequence at the heavy-strand promoter (HSP1) that has the potential to cause significant stalling of mtDNA replication. Furthermore, this structured region of DNA corresponds to the break site for a large (3,895 bp) deletion observed in mitochondrial disease patients. The presence of this deletion in humans correlates with UV exposure, and we have found that efficiency of polymerase γ DNA synthesis is reduced after this quadruplex is exposed to UV in vitro.


Subject(s)
DNA Polymerase gamma/metabolism , DNA, Mitochondrial/metabolism , G-Quadruplexes , Biocatalysis , DNA Replication/radiation effects , Humans , Mitochondria/genetics , Mitochondrial Diseases/genetics , Mitochondrial Diseases/pathology , Promoter Regions, Genetic , Substrate Specificity , Ultraviolet Rays
10.
Arthritis Rheumatol ; 72(2): 242-250, 2020 02.
Article in English | MEDLINE | ID: mdl-31449733

ABSTRACT

OBJECTIVE: Autoantibodies against citrullinated proteins are found in 64-89% of rheumatoid arthritis (RA) patients, with 88-99% specificity. This study was undertaken to create an unbiased, comprehensive profile of serum antibodies against the human proteome, including the citrullinome and the homocitrullinome, in RA patients, using a high-density peptide array. METHODS: Our high-density peptide array, consisting of >4.6 million peptides, contained the entire annotated human proteome. The 20,246 proteins were represented as overlapping 16-mer peptides. In addition to native peptides, citrullinated and homocitrullinated peptides were included, as substitutions for arginine and lysine, and provided a comprehensive screen against all possible epitopes. Twenty-six serum samples (from 8 controls and 18 RA patients) were profiled on the high-density peptide array. Using RA-specific epitopes, we constructed an 8-epitope diagnostic biomarker on a Gyrolab xPlore instrument with a cohort of 92 serum samples (from 29 controls and 63 RA patients). The diagnostic biomarker was further validated with an independent cohort of 181 serum samples (from 54 controls and 127 RA patients). RESULTS: In the initial cohort the diagnostic performance of the 8-epitope biomarker yielded 96.6% specificity and 92.1% sensitivity. The overall diagnostic performance in the validation cohort was 94.4% specificity and 85% sensitivity. In both cohorts, the performance of the 8-epitope diagnostic biomarker compared favorably against the Abnova cyclic citrullinated peptide 2 (CCP2) assay. Using data from the peptide array, we identified novel RA-specific epitopes and formed the basis of a new RA diagnostic assay. CONCLUSION: Comprehensive antibody profiling using a high-density peptide array not only identified novel RA-specific epitopes but also allowed us to construct a novel diagnostic biomarker that is as specific as and more sensitive than the Abnova CCP2 assay.


Subject(s)
Anti-Citrullinated Protein Antibodies/blood , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/immunology , Autoantibodies/blood , Epitopes/blood , Cohort Studies , Humans
11.
Cancer Res ; 79(7): 1549-1557, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30723114

ABSTRACT

The majority of non-small-cell lung cancer (NSCLC) cases are diagnosed at advanced stages, primarily because earlier stages of the disease are either asymptomatic or may be attributed to other causes such as infection or long-term effects from smoking. Therefore, early detection of NSCLC would likely increase response and survival rates due to timely intervention. Here, we utilize a novel approach based on whole genome-derived tiled peptide arrays to identify epitopes associated with autoantibody reactivity in NSCLC as a potential means for early detection. Arrays consisted of 2,781,902 tiled peptides representing 20,193 proteins encoded in the human genome. Analysis of 86 prediagnostic samples and 86 matched normal controls from a high-risk cohort revealed 48 proteins with three or more reactive epitopes in NSCLC samples relative to controls. Independent mass spectrometry analysis identified 40 of the 48 proteins in prediagnostic sera from NSCLC samples, of which, 21 occurred in the immunoglobulin-bound fraction. In addition, 63 and 34 proteins encompassed three or more epitopes that were distinct for squamous cell lung cancer and lung adenocarcinoma, respectively. Collectively, these data show that tiled peptide arrays provide a means to delineate epitopes encoded across the genome that trigger an autoantibody response associated with tumor development. SIGNIFICANCE: This study provides a modality for early diagnosis of NSCLC for precision oncology that can be applied to other cancer types.


Subject(s)
Autoantibodies/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Genome, Human , Lung Neoplasms/immunology , Peptides/genetics , Annexins/immunology , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/genetics , Case-Control Studies , Double-Blind Method , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Mass Spectrometry , Placebos , Precision Medicine , Tumor Suppressor Protein p53/immunology
12.
Med Sci Educ ; 29(4): 995-1001, 2019 Dec.
Article in English | MEDLINE | ID: mdl-34457576

ABSTRACT

PURPOSE: Medical student specialty choices have significant downstream effects on the availability of physicians and, ultimately, the effectiveness of health systems. This study investigated how medical student specialty preferences change over time in relation to their demographics and lifestyle preferences. METHOD: Students from ten medical schools were surveyed at matriculation (2012) and graduation (2016). The two surveys included questions about specialty and lifestyle preferences, demographics, educational background, and indebtedness. Student data from 2012 to 2016 were paired together and grouped into those whose specialty preferences remained constant or switched. RESULTS: Response rates in 2012 and 2016 were 65% (997/1530) and 50% (788/1575), respectively. Fourth-year students ranked "enjoying the type of work I am doing" as less important to a good physician lifestyle than did first-year students (from 59.6 to 39.7%). The lifestyle factors "having control of work schedule" and "having enough time off work" were ranked as more important to fourth-year students than first-year students (from 15.6 to 18.2% and 14.8 to 31.9%, respectively). The paired dataset included 19% of eligible students (237/1226). Demographic and lifestyle factors were not significantly associated with specialty preference switching. Additionally, no significant association existed between changing lifestyle preferences and switching specialty preference (p = 0.85). CONCLUSIONS: During the course of medical school, lifestyle preferences became more focused on day-to-day factors and less on deeper motivational factors. Neither demographics nor lifestyle preferences appear to relate to a student's decision to switch specialty preference during medical school. These findings represent an important step in uncovering causes of specialty preference trends.

13.
mBio ; 9(2)2018 03 06.
Article in English | MEDLINE | ID: mdl-29511073

ABSTRACT

Zika virus (ZIKV) is implicated in fetal stillbirth, microcephaly, intracranial calcifications, and ocular anomalies following vertical transmission from infected mothers. In adults, infection may trigger autoimmune inflammatory polyneuropathy. Transmission most commonly follows the bite of infected Aedes mosquitoes but may also occur through sexual intercourse or receipt of blood products. Definitive diagnosis through detection of viral RNA is possible in serum or plasma within 10 days of disease onset, in whole blood within 3 weeks of onset, and in semen for up to 3 months. Serological diagnosis is nonetheless critical because few patients have access to molecular diagnostics during the acute phase of infection and infection may be associated with only mild or inapparent disease that does not prompt molecular testing. Serological diagnosis is confounded by cross-reactivity of immune sera with other flaviviruses endemic in the areas where ZIKV has recently emerged. Accordingly, we built a high-density microarray comprising nonredundant 12-mer peptides that tile, with one-residue overlap, the proteomes of Zika, dengue, yellow fever, West Nile, Ilheus, Oropouche, and chikungunya viruses. Serological analysis enabled discovery of a ZIKV NS2B 20-residue peptide that had high sensitivity (96.0%) and specificity (95.9%) versus natural infection with or vaccination against dengue, chikungunya, yellow fever, West Nile, tick-borne encephalitis, or Japanese encephalitis virus in a microarray assay and an enzyme-linked immunosorbent assay (ELISA) of early-convalescent-phase sera (2 to 3 weeks after onset of symptomatic infection).IMPORTANCE The emergence of Zika virus (ZIKV) as a teratogen is a profound challenge to global public health. Molecular diagnosis of infection is straightforward during the 3-week period when patients are viremic. However, serological diagnosis thereafter of historical exposure has been confounded by cross-reactivity. Using high-density peptide arrays that tile the proteomes of a selection of flaviviruses to identify a ZIKV-specific peptide, we established two assays that enable sensitive and specific diagnosis of exposure to ZIKV. These assays may be useful in guiding clinical management of mothers at risk for potential exposure to ZIKV and enable insights into the epidemiology of ZIKV infections.


Subject(s)
Enzyme-Linked Immunosorbent Assay/methods , Zika Virus Infection/diagnosis , Arboviruses/pathogenicity , Communicable Diseases, Emerging/diagnosis , Communicable Diseases, Emerging/virology , Flavivirus/pathogenicity , RNA, Viral/genetics , Zika Virus , Zika Virus Infection/virology
14.
Sci Rep ; 8(1): 3158, 2018 02 16.
Article in English | MEDLINE | ID: mdl-29453420

ABSTRACT

Tick-borne diseases are the most common vector-borne diseases in the United States, with serology being the primary method of diagnosis. We developed the first multiplex, array-based assay for serodiagnosis of tick-borne diseases called the TBD-Serochip. The TBD-Serochip was designed to discriminate antibody responses to 8 major tick-borne pathogens present in the United States, including Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi, Borrelia miyamotoi, Ehrlichia chaffeensis, Rickettsia rickettsii, Heartland virus and Powassan virus. Each assay contains approximately 170,000 12-mer linear peptides that tile along the protein sequence of the major antigens from each agent with 11 amino acid overlap. This permits accurate identification of a wide range of specific immunodominant IgG and IgM epitopes that can then be used to enhance diagnostic accuracy and integrate differential diagnosis into a single assay. To test the performance of the TBD-Serochip, we examined sera from patients with confirmed Lyme disease, babesiosis, anaplasmosis, and Powassan virus disease. We identified a wide range of specific discriminatory epitopes that facilitated accurate diagnosis of each disease. We also identified previously undiagnosed infections. Our results indicate that the TBD-Serochip is a promising tool for a differential diagnosis not available with currently employed serologic assays for TBDs.


Subject(s)
Serologic Tests , Tick-Borne Diseases/diagnosis , Encephalitis Viruses, Tick-Borne/isolation & purification , Humans , Tick-Borne Diseases/blood , Tick-Borne Diseases/virology
15.
Sci Rep ; 7(1): 12116, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28935886

ABSTRACT

Considerable efforts have been made to develop technologies for selection of peptidic molecules that act as substrates or binders to a protein of interest. Here we demonstrate the combination of rational peptide array library design, parallel screening and stepwise evolution, to discover novel peptide hotspots. These hotspots can be systematically evolved to create high-affinity, high-specificity binding peptides to a protein target in a reproducible and digitally controlled process. The method can be applied to synthesize both linear and cyclic peptides, as well as peptides composed of natural and non-natural amino acid analogs, thereby enabling screens in a much diverse chemical space. We apply this method to stepwise evolve peptide binders to streptavidin, a protein studied for over two decades and report novel peptides that mimic key interactions of biotin to streptavidin.


Subject(s)
Peptide Library , Peptides/metabolism , Streptavidin/metabolism , Amino Acid Sequence , Binding Sites , Molecular Docking Simulation , Peptides/chemistry , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Protein Binding , Proteins/chemistry , Proteins/metabolism , Streptavidin/chemistry
16.
Sci Rep ; 6: 36629, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27824133

ABSTRACT

Snakebite envenoming is a serious condition requiring medical attention and administration of antivenom. Current antivenoms are antibody preparations obtained from the plasma of animals immunised with whole venom(s) and contain antibodies against snake venom toxins, but also against other antigens. In order to better understand the molecular interactions between antivenom antibodies and epitopes on snake venom toxins, a high-throughput immuno-profiling study on all manually curated toxins from Dendroaspis species and selected African Naja species was performed based on custom-made high-density peptide microarrays displaying linear toxin fragments. By detection of binding for three different antivenoms and performing an alanine scan, linear elements of epitopes and the positions important for binding were identified. A strong tendency of antivenom antibodies recognizing and binding to epitopes at the functional sites of toxins was observed. With these results, high-density peptide microarray technology is for the first time introduced in the field of toxinology and molecular details of the evolution of antibody-toxin interactions based on molecular recognition of distinctive toxic motifs are elucidated.


Subject(s)
Antivenins/chemistry , Dendroaspis , Elapid Venoms/chemistry , Epitopes/chemistry , Peptide Library , Protein Array Analysis/methods , Animals
18.
J Biol Chem ; 291(13): 6748-53, 2016 Mar 25.
Article in English | MEDLINE | ID: mdl-26887941

ABSTRACT

Understanding of the structure of the γ-secretase complex consisting of presenilin (PS), anterior pharynx-defective 1 (APH-1), nicastrin (NCT), and presenilin enhancer 2 (PEN-2) is of significant therapeutic interest for the design of γ-secretase modulators for Alzheimer disease. The structure of γ-secretase revealed by cryo-EM approaches suggested a substrate binding mechanism for NCT, a bilobar structure that involved rotation of the two lobes around a central pivot and opening of a "lid" region that facilitates substrate recruitment. To validate this proposal, we expressed NCT that lacks the lid entirely, or a variety of NCT variants that harbor mutations at highly conserved residues in the lid region inNCT-deficient cells, and then assessed their impact on γ-secretase assembly, activity, and stability. In addition, we assessed the impact of mutating a critical residue proposed to be a pivot around which the two lobes of NCT rotate. Our results show that neither the mutations on the lid tested here nor the entire lid deletion has any significant impact on γ-secretase assembly, activity, and stability, and that NCT with the mutation of the proposed pivot rescues γ-secretase activity inNCT-deficient cells in a manner indistinguishable from WT NCT. These findings indicate that the NCT lid is not an essential element necessary for γ-secretase assembly, activity, and stability, and that rotation of the two lobes appears not to be a prerequisite for substrate binding and γ-secretase function.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Fibroblasts/metabolism , Membrane Glycoproteins/genetics , Membrane Proteins/metabolism , Peptide Hydrolases/metabolism , Presenilins/metabolism , Amino Acid Sequence , Amyloid Precursor Protein Secretases/chemistry , Amyloid Precursor Protein Secretases/genetics , Animals , Cell Line , Endopeptidases , Fibroblasts/cytology , Gene Expression Regulation , Genetic Complementation Test , Humans , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Membrane Proteins/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Peptide Hydrolases/genetics , Presenilins/genetics , Protein Binding , Protein Multimerization , Protein Stability , Protein Structure, Tertiary , Sequence Alignment , Signal Transduction , Structure-Activity Relationship
19.
ACS Chem Biol ; 11(3): 706-16, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26907466

ABSTRACT

Epigenetic regulation is a key factor in cellular homeostasis. Post-translational modifications (PTMs) are a central focus of this regulation as they function as signaling markers within the cell. Lysine acetylation is a dynamic, reversible PTM that has garnered recent attention due to alterations in various types of cancer. Acetylation levels are regulated by two opposing enzyme families: lysine acetyltransferases (KATs) and histone deacetylases (HDACs). HDACs are key players in epigenetic regulation and have a role in the silencing of tumor suppressor genes. The dynamic equilibrium of acetylation makes HDACs attractive targets for drug therapy. However, substrate selectivity and biological function of HDAC isozymes is poorly understood. This review outlines the current understanding of the roles and specific epigenetic interactions of the metal-dependent HDACs in addition to their roles in cancer.


Subject(s)
Histone Deacetylases/metabolism , Metals/metabolism , Neoplasms/metabolism , Animals , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans
20.
Rapid Commun Mass Spectrom ; 30(14): 1734-1742, 2016 07 30.
Article in English | MEDLINE | ID: mdl-28328036

ABSTRACT

RATIONALE: Accurate quantification of methionine oxidation in therapeutic proteins by liquid chromatography/mass spectrometry (LC/MS) is challenging due to the potential artifacts introduced during sample preparation and analysis in the peptide mapping workflow. In this study, a systematic approach for optimization of the peptide mapping procedure to achieve reliable quantification of endogenous methionine oxidation in monoclonal antibodies was developed. METHODS: The approach is based on usage of a stable-isotope-labeled reporter peptide, identical in sequence to the tryptic peptide of an IgG1 monoclonal antibody containing the methionine residue most prone to oxidation. This approach was applied to evaluating various desalting procedures, and tested on nanoLC/MS, microLC/MS and UPLC/MS for the peptide mapping analysis of a model monoclonal antibody IgG1 sensitive to oxidation. RESULTS: Several steps in the peptide mapping procedure with LC/MS detection at which protein oxidation occurred were identified and optimized using the reference stable-isotope-labeled peptide. Thus, reliable quantification of methionine oxidation in the target monoclonal antibody was validated. CONCLUSIONS: The methodology which utilizes the reference stable-isotope-labeled reporter peptide is applicable to monoclonal antibody oxidation analysis and could be extended to other biotherapeutics once oxidation-prone methionine(s) in the protein sequence are identified. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Antibodies, Monoclonal/chemistry , Antioxidants , Chromatography, Liquid , Peptides , Isotopes , Mass Spectrometry , Methionine
SELECTION OF CITATIONS
SEARCH DETAIL
...