Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
Add more filters










Publication year range
1.
Bioeng Transl Med ; 9(3): e10642, 2024 May.
Article in English | MEDLINE | ID: mdl-38818118

ABSTRACT

Chronic wounds are an unmet clinical need affecting millions of patients globally, and current standards of care fail to consistently promote complete wound closure and prevent recurrence. Disruptions in growth factor signaling, a hallmark of chronic wounds, have led researchers to pursue growth factor therapies as potential supplements to standards of care. Initial studies delivering growth factors in protein form showed promise, with a few formulations reaching clinical trials and one obtaining clinical approval. However, protein-form growth factors are limited by instability and off-target effects. Gene therapy offers an alternative approach to deliver growth factors to the chronic wound environment, but safety concerns surrounding gene therapy as well as efficacy challenges in the gene delivery process have prevented clinical translation. Current growth factor delivery and gene therapy approaches have primarily used single growth factor formulations, but recent efforts have aimed to develop multi-growth factor approaches that are better suited to address growth factor insufficiencies in the chronic wound environment, and these strategies have demonstrated improved efficacy in preclinical studies. This review provides an overview of chronic wound healing, emphasizing the need and potential for growth factor therapies. It includes a summary of current standards of care, recent advances in growth factor, cell-based, and gene therapy approaches, and future perspectives for multi-growth factor therapeutics.

2.
ACS Appl Mater Interfaces ; 16(11): 13399-13410, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38466900

ABSTRACT

Although lipid nanoparticles (LNPs) are the predominant nanocarriers for short-interfering RNA (siRNA) delivery, most therapies use nearly identical formulations that have taken 30 years to design but lack the diverse property ranges necessary for versatile application. This dearth in variety and the extended timeline for implementation are attributed to a limited understanding of how LNP properties facilitate overcoming biological barriers. Herein, a simple kinetic model was developed by using major rate-limiting steps for siRNA delivery, and this model enabled the identification of a critical parameter to predict LNP efficacy without extensive experimental testing. A volume-averaged log D, the "solubility" of charged molecules as a function of pH weighted by component volume fractions, resulted in a good correlation between LNP composition and siRNA delivery. Both the effects of modifying the structures of ionizable lipids and LNP composition on gene silencing were easily captured in the model predictions. Thus, this approach provides a robust LNP structure-activity relationship to dramatically accelerate the realization of effective LNP formulations.


Subject(s)
Lipids , Nanoparticles , Lipids/chemistry , Liposomes , RNA, Small Interfering/chemistry , Nanoparticles/chemistry
3.
Curr Opin Biotechnol ; 86: 103070, 2024 04.
Article in English | MEDLINE | ID: mdl-38354452

ABSTRACT

Protein nanoparticles offer a highly tunable platform for engineering multifunctional drug delivery vehicles that can improve drug efficacy and reduce off-target effects. While many protein nanoparticles have demonstrated the ability to tolerate genetic and posttranslational modifications for drug delivery applications, this review will focus on three protein nanoparticles of increasing size. Each protein nanoparticle possesses distinct properties such as highly tunable stability, capacity for splitting or fusing subunits for modular surface decoration, and well-characterized conformational changes with impressive capacity for large protein cargos. While many of the genetic and posttranslational modifications leverage these protein nanoparticle's properties, the shared techniques highlight engineering approaches that have been generalized across many protein nanoparticle platforms.


Subject(s)
Drug Delivery Systems , Nanoparticles , Drug Delivery Systems/methods
4.
Small ; 20(15): e2308390, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38037673

ABSTRACT

Compartments are a fundamental feature of life, based variously on lipid membranes, protein shells, or biopolymer phase separation. Here, this combines self-assembling bacterial microcompartment (BMC) shell proteins and liquid-liquid phase separation (LLPS) to develop new forms of compartmentalization. It is found that BMC shell proteins assemble at the liquid-liquid interfaces between either 1) the dextran-rich droplets and PEG-rich continuous phase of a poly(ethyleneglycol)(PEG)/dextran aqueous two-phase system, or 2) the polypeptide-rich coacervate droplets and continuous dilute phase of a polylysine/polyaspartate complex coacervate system. Interfacial protein assemblies in the coacervate system are sensitive to the ratio of cationic to anionic polypeptides, consistent with electrostatically-driven assembly. In both systems, interfacial protein assembly competes with aggregation, with protein concentration and polycation availability impacting coating. These two LLPS systems are then combined to form a three-phase system wherein coacervate droplets are contained within dextran-rich phase droplets. Interfacial localization of BMC hexameric shell proteins is tunable in a three-phase system by changing the polyelectrolyte charge ratio. The tens-of-micron scale BMC shell protein-coated droplets introduced here can accommodate bioactive cargo such as enzymes or RNA and represent a new synthetic cell strategy for organizing biomimetic functionality.


Subject(s)
Bacterial Proteins , Dextrans , Bacterial Proteins/metabolism
5.
J Mater Chem B ; 11(18): 3985-3993, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37083736

ABSTRACT

Protein therapeutics offer enormous clinical impact in treating a variety of diseases by offering high selectivity with limited off-target effects. However, delivery challenges severely hinder functional proteins from reaching their target cells and necessitate frequent administration. To address these problems, nanocarrier encapsulation can provide protease protection and enhanced targeted transportation of functional proteins to their intended disease site. Inspired by their viral analogues, virus-like particles (VLPs) are non-infectious viral capsids that have potential for drug delivery applications because of their shared structural characteristics, such as high loading capacity, particle stability, and structural uniformity. Here, we describe a modular hepatitis B virus (HBV) VLP delivery platform offering tunable modifications of both the exterior and interior viral capsid surfaces via SpyCatcher-SpyTag bioconjugation and a multi-expression system, respectively. This new platform facilitates modification with epidermal growth factor receptor (EGFR)-targeting proteins and encapsulation with both model green fluorescent protein (GFP) and prodrug-converting yeast cytosine deaminase (yCD) enzyme. The resultant targeted VLPs demonstrated enhanced uptake and toxicity in EGFR-overexpressing triple negative breast cancer (TNBC) cells in contrast to non-malignant breast epithelial cells.


Subject(s)
Hepatitis B virus , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Drug Delivery Systems , Green Fluorescent Proteins/genetics , Saccharomyces cerevisiae , ErbB Receptors
6.
Annu Rev Chem Biomol Eng ; 14: 243-264, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36888991

ABSTRACT

From the first clinical trial by Dr. W.F. Anderson to the most recent US Food and Drug Administration-approved Luxturna (Spark Therapeutics, 2017) and Zolgensma (Novartis, 2019), gene therapy has revamped thinking and practice around cancer treatment and improved survival rates for adult and pediatric patients with genetic diseases. A major challenge to advancing gene therapies for a broader array of applications lies in safely delivering nucleic acids to their intended sites of action. Peptides offer unique potential to improve nucleic acid delivery based on their versatile and tunable interactions with biomolecules and cells. Cell-penetrating peptides and intracellular targeting peptides have received particular focus due to their promise for improving the delivery of gene therapies into cells. We highlight key examples of peptide-assisted, targeted gene delivery to cancer-specific signatures involved in tumor growth and subcellular organelle-targeting peptides, as well as emerging strategies to enhance peptide stability and bioavailability that will support long-term implementation.


Subject(s)
Cell-Penetrating Peptides , Neoplasms , Nucleic Acids , Humans , Child , Gene Transfer Techniques , Genetic Therapy , Cell-Penetrating Peptides/chemistry , Neoplasms/genetics , Neoplasms/therapy , Drug Delivery Systems
7.
ACS Appl Mater Interfaces ; 15(13): 16434-16447, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36961242

ABSTRACT

Disruption in vascularization during wound repair can severely impair healing. Proangiogenic growth factor therapies have shown great healing potential; however, controlling growth factor activity and cellular behavior over desired healing time scales remains challenging. In this study, we evaluated collagen-mimetic peptide (CMP) tethers for their capacity to control growth factor gene transfer and growth factor activity using our recently developed gene-activated hyaluronic acid-collagen matrix (GAHCM). GAHCM was comprised of DNA/polyethyleneimine (PEI) polyplexes that were retained on hyaluronic acid (HA)-collagen hydrogels using CMPs. We hypothesized that using CMP-collagen tethers to control vascular endothelial growth factor-A (VEGF-A) gene delivery in fibroblasts would provide a powerful strategy to modulate the proangiogenic behaviors of endothelial cells (ECs) for blood vessel formation, resulting in enhanced wound repair. In co-culture experiments, we observed that CMP-modified GAHCM induced tunable gene delivery in fibroblasts as predicted, and correspondingly, VEGF-A produced by the fibroblasts led to increased growth and persistent migration of ECs for at least 7 days, as compared to non-CMP-modified GAHCM. Moreover, when ECs were exposed to fibroblast-containing VEGF-GAHCM with higher levels of CMP modification (50% CMP-PEI, or 50 CP), high CD31 expression was stimulated, resulting in the formation of an interconnected EC network with a significantly higher network volume and a larger diameter network structure than controls. Application of VEGF-GAHCM with 50 CP in murine splinted excisional wounds facilitated prolonged prohealing and proangiogenic responses resulting in increased blood vessel formation, improved granulation tissue formation, faster re-epithelialization, and overall enhanced repair. These findings suggest the benefits of CMP-collagen tethers as useful tools to control gene transfer and growth factor activity for improved treatment of wounds.


Subject(s)
Vascular Endothelial Growth Factor A , Wound Healing , Mice , Animals , Vascular Endothelial Growth Factor A/metabolism , Hyaluronic Acid/chemistry , Endothelial Cells/metabolism , Collagen/chemistry
8.
Mol Pharm ; 20(3): 1696-1708, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36707500

ABSTRACT

Despite the great promise of antibiotic therapy in wound infections, antibiotic resistance stemming from frequent dosing diminishes drug efficacy and contributes to recurrent infection. To identify improvements in antibiotic therapies, new antibiotic delivery systems that maximize pharmacological activity and minimize side effects are needed. In this study, we developed elastin-like peptide and collagen-like peptide nanovesicles (ECnVs) tethered to collagen-containing matrices to control vancomycin delivery and provide extended antibacterial effects against methicillin-resistant Staphylococcus aureus (MRSA). We observed that ECnVs showed enhanced entrapment efficacy of vancomycin by 3-fold as compared to liposome formulations. Additionally, ECnVs enabled the controlled release of vancomycin at a constant rate with zero-order kinetics, whereas liposomes exhibited first-order release kinetics. Moreover, ECnVs could be retained on both collagen-fibrin (co-gel) matrices and collagen-only matrices, with differential retention on the two biomaterials resulting in different local concentrations of released vancomycin. Overall, the biphasic release profiles of vancomycin from ECnVs/co-gel and ECnVs/collagen more effectively inhibited the growth of MRSA for 18 and 24 h, respectively, even after repeated bacterial inoculation, as compared to matrices containing free vancomycin, which just delayed the growth of MRSA. Thus, this newly developed antibiotic delivery system exhibited distinct advantages for controlled vancomycin delivery and prolonged antibacterial activity relevant to the treatment of wound infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Wound Infection , Humans , Vancomycin , Anti-Bacterial Agents/pharmacology , Liposomes/pharmacology , Microbial Sensitivity Tests , Collagen/pharmacology
9.
Adv Drug Deliv Rev ; 191: 114570, 2022 12.
Article in English | MEDLINE | ID: mdl-36228897

ABSTRACT

Currently, there are over 100 antibody-based therapeutics on the market for the treatment of various diseases. The increasing importance of antibody treatment is further highlighted by the recent FDA emergency use authorization of certain antibody therapies for COVID-19 treatment. Protein-based materials have gained momentum for antibody delivery due to their biocompatibility, tunable chemistry, monodispersity, and straightforward synthesis and purification. In this review, we discuss progress in engineering the molecular features of protein-based biomaterials, in particular recombinant protein polymers, for introducing novel functionalities and enhancing the delivery properties of antibodies and related binding protein domains.


Subject(s)
COVID-19 Drug Treatment , Polymers , Humans , Polymers/chemistry , Nanotechnology , Biocompatible Materials/chemistry , Recombinant Proteins , Antibodies
10.
STAR Protoc ; 3(4): 101723, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36313537

ABSTRACT

We present a computational modeling protocol that can accurately predict changes in both in vitro and in vivo gene expression levels in response to the application of various siRNA formulations. We describe how to use this Python-based pipeline to obtain crucial information, namely maximum silencing level and duration of silencing, toward the design of therapeutically relevant dosing regimens. The protocol details the steps for running internalization rate fitting to produce predictions based on experimental measurements from a single time point. For complete details on the use and execution of this protocol, please refer to Roh et al., 2021.


Subject(s)
Gene Silencing , RNA, Small Interfering/genetics , Kinetics
11.
Acta Biomater ; 150: 138-153, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35907557

ABSTRACT

Growth factor therapy has demonstrated great promise for chronic wound repair, but controlling growth factor activity and cell phenotype over desired time frames remains a critical challenge. In this study, we developed a gene-activated hyaluronic acid-collagen matrix (GAHCM) comprising DNA/polyethylenimine (PEI) polyplexes retained on hyaluronic acid (HA)-collagen hydrogels using collagen mimetic peptides (CMPs). We hypothesized that manipulating both the number of CMP-collagen tethers and the ECM composition would provide a powerful strategy to control growth factor gene transfer kinetics while regulating cell behavior, resulting in enhanced growth factor activity for wound repair. We observed that polyplexes with 50% CMP-modified PEI (50 CP) showed enhanced retention of polyplexes in HCM hydrogels by 2.7-fold as compared to non-CMP modified polyplexes. Moreover, the incorporation of HA in the hydrogel promoted a significant increase in gene transfection efficiency based upon analysis of Gaussia luciferase (GLuc) reporter gene expression, and gene expression could be attenuated by blocking HA-CD44 signaling. Furthermore, when fibroblasts were exposed to vascular endothelial growth factor-A (VEGF-A)-GAHCM, the 50 CP matrix facilitated sustained VEGF-A production for up to 7 days, with maximal expression at day 5. Application of these VEGF-A-50 CP samples stimulated prolonged pro-healing responses, including the TGF-ß1-induced myofibroblast-like phenotypes and enhanced closure of murine splinted wounds. Overall, these findings demonstrate the use of ECM-based materials to stimulate efficient gene transfer and regulate cellular phenotype, resulting in improved control of growth factor activity for wound repair. GAHCM has significant potential to overcome key challenges in growth factor therapy for regenerative medicine. STATEMENT OF SIGNIFICANCE: Despite great promise for growth factor therapies in wound treatment, controlling growth factor activity and providing a microenvironment for cells that maximizes growth factor signaling have continued to limit the success of existing formulations. Our GAHCM strategy, combining CMP gene delivery and a hyaluronic acid-collagen matrix, enabled enhanced wound healing efficacy via the combination of controlled and localized growth factor expression and matrix-mediated regulation of cell behavior. Incorporation of CMPs and HA in the same matrix synergistically enhanced VEGF activity as compared with simpler matrices. Accordingly, GAHCM will advance our ability to leverage growth factor signaling for wound healing, resulting in new long-term treatments for recalcitrant wounds.


Subject(s)
Hyaluronic Acid , Vascular Endothelial Growth Factor A , Animals , Collagen/chemistry , Fibroblasts/metabolism , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Mice , Polyethyleneimine/chemistry , Polyethyleneimine/pharmacology , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Wound Healing
12.
J Vis Exp ; (180)2022 02 15.
Article in English | MEDLINE | ID: mdl-35253803

ABSTRACT

Quantification of cells is necessary for a wide range of biological and biochemical studies. Conventional image analysis of cells typically employs either fluorescence detection approaches, such as immunofluorescent staining or transfection with fluorescent proteins or edge detection techniques, which are often error-prone due to noise and other non-idealities in the image background. We designed a new algorithm that could accurately count and distinguish macrophages and fibroblasts, cells of different phenotypes that often colocalize during tissue regeneration. MATLAB was used to implement the algorithm, which differentiated distinct cell types based on differences in height from the background. A primary algorithm was developed using an area-based method to account for variations in cell size/structure and high-density seeding conditions. Non-idealities in cell structures were accounted for with a secondary, iterative algorithm utilizing internal parameters such as cell coverage computed using experimental data for a given cell type. Finally, an analysis of coculture environments was carried out using an isolation algorithm in which various cell types were selectively excluded based on the evaluation of relative height differences within the image. This approach was found to accurately count cells within a 5% error margin for monocultured cells and within a 10% error margin for cocultured cells.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Coculture Techniques , Fibroblasts , Image Processing, Computer-Assisted/methods , Macrophages/metabolism
13.
Bioconjug Chem ; 33(3): 452-462, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35167278

ABSTRACT

Naturally occurring protein nanocages are promising drug carriers because of their uniform size and biocompatibility. Engineering efforts have enhanced the delivery properties of nanocages, but cell specificity and high drug loading remain major challenges. Herein, we fused the SpyTag peptide to the surface of engineered E2 nanocages to enable tunable nanocage decoration and effective E2 cell targeting using a variety of SpyCatcher (SC) fusion proteins. Additionally, the core of the E2 nanocage incorporated four phenylalanine mutations previously shown to allow hydrophobic loading of doxorubicin and pH-responsive release in acidic environments. We functionalized the surface of the nanocage with a highly cell-specific epidermal growth factor receptor (EGFR)-targeting protein conjugate, 4GE11-mCherry-SC, developed previously in our laboratories by employing unnatural amino acid (UAA) protein engineering chemistries. Herein, we demonstrated the benefits of this engineered protein nanocage construct for efficient drug loading, with a straightforward method for removal of the unloaded drug through elastin-like polypeptide-mediated inverse transition cycling. Additionally, we demonstrated approximately 3-fold higher doxorubicin internalization in inflammatory breast cancer cells compared to healthy breast epithelial cells, leading to targeted cell death at concentrations below the IC50 of free doxorubicin. Collectively, these results demonstrated the versatility of our UAA-based EGFR-targeting protein construct to deliver a variety of cargoes efficiently, including engineered E2 nanocages capable of site-specific functionalization and doxorubicin loading.


Subject(s)
Breast Neoplasms , Drug Carriers , Breast Neoplasms/drug therapy , Cell Line, Tumor , Doxorubicin/pharmacology , Drug Delivery Systems/methods , ErbB Receptors , Female , Humans , Ligands
14.
Mol Pharm ; 19(2): 661-673, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35040326

ABSTRACT

Intracellular delivery of protein therapeutics remains a significant challenge limiting the majority of clinically available protein drugs to extracellular targets. Strategies to deliver proteins to subcellular compartments have traditionally relied on cell-penetrating peptides, which can drive enhanced internalization but exhibit unreliable activity and are rarely able to target specific cells, leading to off-target effects. Moreover, few design rules exist regarding the relative efficacy of various endosomal escape strategies in proteins. Accordingly, we developed a simple fusion modification approach to incorporate endosomolytic peptides onto epidermal growth factor receptor (EGFR)-targeted protein conjugates and performed a systematic comparison of the endosomal escape efficacy, mechanism of action, and capacity to maintain EGFR-targeting specificity of conjugates modified with four different endosomolytic sequences of varying modes of action (Aurein 1.2, GALA, HA2, and L17E). Use of the recently developed Gal8-YFP assay indicated that the fusion of each endosomolytic peptide led to enhanced endosomal disruption. Additionally, the incorporation of each endosomolytic peptide increased the half-life of the internalized protein and lowered lysosomal colocalization, further supporting the membrane-disruptive capacity. Despite this, only EGFR-targeted conjugates modified with Aurein 1.2 or GALA maintained EGFR specificity. These results thus demonstrated that the choice of endosomal escape moiety can substantially affect targeting capability, cytotoxicity, and bioactivity and provided important new insights into endosomolytic peptide selection for the design of targeted protein delivery systems.


Subject(s)
Breast Neoplasms , Cell-Penetrating Peptides , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Cell-Penetrating Peptides/metabolism , Drug Delivery Systems/methods , Endosomes/metabolism , ErbB Receptors/metabolism , Female , Humans
15.
Curr Opin Biotechnol ; 74: 104-109, 2022 04.
Article in English | MEDLINE | ID: mdl-34894574

ABSTRACT

Global implementation of messenger RNA (mRNA) vaccines represents an enormous advance with far-reaching implications for respiratory disease treatment. mRNA vaccines offer exceptional efficacy and versatile capacity to be adapted to new viruses and variants; however, critical questions remain regarding immune persistence and formulation stability. This represents a significant opportunity for developing next-generation, inhaled mRNA vaccines with the ability to drive long-lasting, tissue-specific memory responses needed for rapid recall and immediate local protection. Advances in pulmonary delivery technologies offer potential to overcome translational challenges including design of aerosol-stable and lung-stable formulations, navigation of pulmonary biological barriers, and a lack of predictive models and measurement techniques. We highlight recent advances in each of these challenge areas to illuminate the path to translation.


Subject(s)
Vaccines , mRNA Vaccines , Vaccines/genetics , Vaccines, Synthetic/genetics
16.
ACS Nano ; 15(10): 16055-16066, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34636541

ABSTRACT

A critical hurdle in the clinical translation of nucleic acid drugs is the inefficiency in testing formulations for therapeutic potential. Specifically, the ability to quantitatively predict gene expression is lacking when transitioning between cell culture and animal studies. We address this challenge by developing a mathematical framework that can reliably predict short-interfering RNA (siRNA)-mediated gene silencing with as few as one experimental data point as an input, evaluate the efficacies of existing formulations in an expeditious manner, and ultimately guide the design of nanocarriers with optimized performances. The model herein consisted of only essential rate-limiting steps and parameters with easily characterizable values of the RNA interference process, enabling the easy identification of which parameters play dominant roles in determining the potencies of siRNA formulations. Predictions from our framework were in close agreement with in vitro and in vivo experimental results across a retrospective analysis using multiple published data sets. Notably, our findings suggested that siRNA dilution was the primary determinant of gene-silencing kinetics. Our framework shed light on the fact that this dilution rate is governed by different parameters, i.e., cell dilution (in vitro) versus clearance from target tissue (in vivo), highlighting a key reason why in vitro experiments do not always predict in vivo outcomes. Moreover, although our current effort focuses on siRNA, we anticipate that the framework can be modified and applied to other nucleic acids, such as mRNA, that rely on similar biological processes.


Subject(s)
Nucleic Acids , Animals , Kinetics , RNA Interference , RNA, Small Interfering/genetics , Retrospective Studies
17.
Expert Opin Drug Deliv ; 18(11): 1723-1740, 2021 11.
Article in English | MEDLINE | ID: mdl-34696691

ABSTRACT

INTRODUCTION: The extracellular matrix (ECM) is vital for cell and tissue development. Given its importance, extensive work has been conducted to develop biomaterials and drug delivery vehicles that capture features of ECM structure and function. AREAS COVERED: This review highlights recent developments of ECM-inspired nanocarriers and their exploration for drug and gene delivery applications. Nanocarriers that are inspired by or created from primary components of the ECM (e.g. elastin, collagen, hyaluronic acid (HA), or combinations of these) are explicitly covered. An update on current clinical trials employing elastin-like proteins is also included. EXPERT OPINION: Novel ECM-inspired nanoscale structures and conjugates continue to be of great interest in the materials science and bioengineering communities. Hyaluronic acid nanocarrier systems in particular are widely employed due to the functional activity of HA in mediating a large number of disease states. In contrast, collagen-like peptide nanocarriers are an emerging drug delivery platform with potential relevance to a myriad of ECM-related diseases, making their continued study most pertinent. Elastin-like peptide nanocarriers have a well-established tolerability and efficacy track record in preclinical analyses that has motivated their recent advancement into the clinical arena.


Subject(s)
Elastin , Extracellular Matrix , Collagen , Hyaluronic Acid , Peptides
18.
Curr Opin Biotechnol ; 71: 41-48, 2021 10.
Article in English | MEDLINE | ID: mdl-34157601

ABSTRACT

The importance of bioimaging and biosensing has been clear with the onset of the COVID-19 pandemic. In addition to viral detection, detection of tumors, glucose levels, and microbes is necessary for improved disease treatment and prevention. Bionanoparticles, such as extracellular vesicles and protein nanoparticles, are ideal platforms for biosensing and bioimaging applications because of their propensity for high density surface functionalization and large loading capacity. Scaffolding large numbers of sensing modules and detection modules onto bionanoparticles allows for enhanced analyte affinity and specificity as well as signal amplification for highly sensitive detection even at low analyte concentrations. Here we demonstrate the potential of bionanoparticles for bioimaging and biosensing by highlighting recent examples in literature that utilize protein nanoparticles and extracellular vesicles to generate highly sensitive detection devices with impressive signal amplification.


Subject(s)
Biosensing Techniques , COVID-19 , Nanoparticles , Humans , Pandemics , SARS-CoV-2
19.
Bioconjug Chem ; 31(10): 2272-2282, 2020 10 21.
Article in English | MEDLINE | ID: mdl-32931255

ABSTRACT

Proteins have the capacity to treat a multitude of diseases both as therapeutics and as drug carriers due to their complex functional properties, specificity toward binding partners, biocompatibility, and programmability. Despite this, native proteins often require assistance to target diseased tissue due to poor pharmacokinetic properties and membrane impermeability. Functionalizing therapeutic proteins and drug carriers through direct conjugation of delivery moieties can enhance delivery capabilities. Traditionally, this has been accomplished through bioconjugation methods that have little control over the location or orientation of the modification, leading to highly heterogeneous products with varying activity. A multitude of promising site-specific protein conjugation methods have been developed to allow more tailorable display of delivery moieties and thereby enhance protein activity, circulation properties, and targeting specificity. Here, we focus on three particularly promising site-specific bioconjugation techniques for protein delivery: unnatural amino acid incorporation, Sortase-mediated ligation, and SpyCatcher/SpyTag chemistry. In this review, we highlight the promise of site-specific bioconjugation for targeted drug delivery by summarizing impactful examples in literature, considering important design principles when constructing bioconjugates, and discussing our perspectives on future directions.


Subject(s)
Amino Acids/chemistry , Drug Carriers/chemistry , Proteins/administration & dosage , Amino Acids/chemical synthesis , Animals , Chemistry Techniques, Synthetic/methods , Drug Carriers/chemical synthesis , Drug Delivery Systems , Humans , Models, Molecular , Pharmaceutical Preparations/administration & dosage
20.
ACS Nano ; 14(10): 12642-12651, 2020 10 27.
Article in English | MEDLINE | ID: mdl-32924431

ABSTRACT

The hepatitis B virus-like particle (HBV VLP) is an attractive protein nanoparticle platform due to the availability of 240 modification sites for engineering purposes. Although direct protein insertion into the surface loop has been demonstrated, this decoration strategy is restricted by the size of the inserted protein moieties. Meanwhile, larger proteins can be decorated using chemical conjugations; yet these approaches perturb the integrity of more delicate proteins and can unfavorably orient the proteins, impairing active surface display. Herein, we aim to create a robust and highly modular method to produce smart HBV-based nanodevices by using the SpyCatcher/SpyTag system, which allows a wide range of peptides and proteins to be conjugated directly and simply onto the modified HBV capsids in a controlled and biocompatible manner. Our technology allows the modular surface modification of HBV VLPs with multiple components, which provides signal amplification, increased targeting avidity, and high therapeutic payload incorporation. We have achieved a yield of over 200 mg/L for these engineered HBV VLPs and demonstrated the flexibility of this platform in both biosensing and drug delivery applications. The ability to decorate over 200 nanoluciferases per VLP improved detection signal by over 1500-fold, such that low nanomolar levels of thrombin could be detected by the naked eye. Meanwhile, a dimeric prodrug-activating enzyme was loaded without cross-linking particles by coexpressing orthogonally labeled monomers. This along with a epidermal growth factor receptor-binding peptide enabled tunable uptake of HBV VLPs into inflammatory breast cancer cells, leading to efficient suicide enzyme delivery and cell killing.


Subject(s)
Hepatitis B , Pharmaceutical Preparations , Vaccines, Virus-Like Particle , Capsid , Hepatitis B virus , Humans , Peptides
SELECTION OF CITATIONS
SEARCH DETAIL
...