Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Hum Genet ; 29(7): 1110-1120, 2021 07.
Article in English | MEDLINE | ID: mdl-33654309

ABSTRACT

The MCM2-7 helicase is a heterohexameric complex with essential roles as part of both the pre-replication and pre-initiation complexes in the early stages of DNA replication. Meier-Gorlin syndrome, a rare primordial dwarfism, is strongly associated with disruption to the pre-replication complex, including a single case described with variants in MCM5. Conversely, a biallelic pathogenic variant in MCM4 underlies immune deficiency with growth retardation, features also seen in individuals with pathogenic variants in other pre-initiation complex encoding genes such as GINS1, MCM10, and POLE. Through exome and chromium genome sequencing, supported by functional studies, we identify biallelic pathogenic variants in MCM7 and a strong candidate biallelic pathogenic variant in MCM3. We confirm variants in MCM7 are deleterious and through interfering with MCM complex formation, impact efficiency of S phase progression. The associated phenotypes are striking; one patient has typical Meier-Gorlin syndrome, whereas the second case has a multi-system disorder with neonatal progeroid appearance, lipodystrophy and adrenal insufficiency. We provide further insight into the developmental complexity of disrupted MCM function, highlighted by two patients with a similar variant profile in MCM7 but disparate clinical features. Our results build on other genetic findings linked to disruption of the pre-replication and pre-initiation complexes, and the replisome, and expand the complex clinical genetics landscape emerging due to disruption of DNA replication.


Subject(s)
Adrenal Insufficiency/diagnosis , Adrenal Insufficiency/genetics , Congenital Microtia/diagnosis , Congenital Microtia/genetics , Growth Disorders/diagnosis , Growth Disorders/genetics , Lipodystrophy/diagnosis , Lipodystrophy/genetics , Micrognathism/diagnosis , Micrognathism/genetics , Minichromosome Maintenance Complex Component 3/genetics , Minichromosome Maintenance Complex Component 7/genetics , Patella/abnormalities , Adolescent , Alleles , Amino Acid Sequence , Cell Cycle/genetics , Child , Child, Preschool , Facies , Female , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Genotype , Humans , Infant , Male , Minichromosome Maintenance Complex Component 3/chemistry , Minichromosome Maintenance Complex Component 7/chemistry , Models, Molecular , New Zealand , Phenotype , Protein Conformation
2.
J Med Genet ; 57(3): 195-202, 2020 03.
Article in English | MEDLINE | ID: mdl-31784481

ABSTRACT

MATERIAL: Linked-read whole genome sequencing (WGS) presents a new opportunity for cost-efficient singleton sequencing in place of traditional trio-based designs while generating informative-phased variants, effective for recessive disorders when parental DNA is unavailable. METHODS: We have applied linked-read WGS to identify novel causes of Meier-Gorlin syndrome (MGORS), a condition recognised by short stature, microtia and patella hypo/aplasia. There are eight genes associated with MGORS to date, all encoding essential components involved in establishing and initiating DNA replication. RESULTS: Our successful phasing of linked-read data led to the identification of biallelic rare variants in four individuals (24% of our cohort) in DONSON, a recently established DNA replication fork surveillance factor. The variants include five novel missense and one deep intronic variant. All were demonstrated to be deleterious to function; the missense variants all disrupted the nuclear localisation of DONSON, while the intronic variant created a novel splice site that generated an out-of-frame transcript with no residual canonical transcript produced. CONCLUSION: Variants in DONSON have previously been associated with extreme microcephaly, short stature and limb anomalies and perinatal lethal microcephaly-micromelia syndrome. Our novel genetic findings extend the complicated spectrum of phenotypes associated with DONSON variants and promote novel hypotheses for the role of DONSON in DNA replication. While our findings reiterate that MGORS is a disorder of DNA replication, the pathophysiology is obviously complex. This successful identification of a novel disease gene for MGORS highlights the utility of linked-read WGS as a successful technology to be considered in the genetic studies of recessive conditions.


Subject(s)
Cell Cycle Proteins/genetics , Congenital Microtia/genetics , Genetic Predisposition to Disease , Growth Disorders/genetics , Micrognathism/genetics , Nuclear Proteins/genetics , Patella/abnormalities , Adult , Alleles , Base Sequence/genetics , Child , Congenital Microtia/physiopathology , DNA Replication/genetics , Female , Genome, Human/genetics , Growth Disorders/physiopathology , Humans , Male , Micrognathism/physiopathology , Patella/metabolism , Patella/physiopathology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...