Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 57(48): 19066-19077, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37943968

ABSTRACT

Pollution by chemicals and waste impacts human and ecosystem health on regional, national, and global scales, resulting, together with climate change and biodiversity loss, in a triple planetary crisis. Consequently, in 2022, countries agreed to establish an intergovernmental science-policy panel (SPP) on chemicals, waste, and pollution prevention, complementary to the existing intergovernmental science-policy bodies on climate change and biodiversity. To ensure the SPP's success, it is imperative to protect it from conflicts of interest (COI). Here, we (i) define and review the implications of COI, and its relevance for the management of chemicals, waste, and pollution; (ii) summarize established tactics to manufacture doubt in favor of vested interests, i.e., to counter scientific evidence and/or to promote misleading narratives favorable to financial interests; and (iii) illustrate these with selected examples. This analysis leads to a review of arguments for and against chemical industry representation in the SPP's work. We further (iv) rebut an assertion voiced by some that the chemical industry should be directly involved in the panel's work because it possesses data on chemicals essential for the panel's activities. Finally, (v) we present steps that should be taken to prevent the detrimental impacts of COI in the work of the SPP. In particular, we propose to include an independent auditor's role in the SPP to ensure that participation and processes follow clear COI rules. Among others, the auditor should evaluate the content of the assessments produced to ensure unbiased representation of information that underpins the SPP's activities.


Subject(s)
Conflict of Interest , Ecosystem , Humans , Environmental Pollution , Biodiversity
2.
mBio ; 14(3): e0005223, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37102874

ABSTRACT

Prior research has focused on host factors as mediators of exaggerated sepsis-associated morbidity and mortality in older adults. This focus on the host, however, has failed to identify therapies that improve sepsis outcomes in the elderly. We hypothesized that the increased susceptibility of the aging population to sepsis is not only a function of the host but also reflects longevity-associated changes in the virulence of gut pathobionts. We utilized two complementary models of gut microbiota-induced experimental sepsis to establish the aged gut microbiome as a key pathophysiologic driver of heightened disease severity. Further murine and human investigations into these polymicrobial bacterial communities demonstrated that age was associated with only subtle shifts in ecological composition but also an overabundance of genomic virulence factors that have functional consequence on host immune evasion. IMPORTANCE Older adults suffer more frequent and worse outcomes from sepsis, a critical illness secondary to infection. The reasons underlying this unique susceptibility are incompletely understood. Prior work in this area has focused on how the immune response changes with age. The current study, however, focuses instead on alterations in the community of bacteria that humans live with within their gut (i.e., the gut microbiome). The central concept of this paper is that the bacteria in our gut evolve along with the host and "age," making them more efficient at causing sepsis.


Subject(s)
Gastrointestinal Microbiome , Sepsis , Humans , Animals , Mice , Aged , Gastrointestinal Microbiome/physiology , Virulence , Bacteria/genetics , Aging , Sepsis/microbiology
3.
Environ Sci Process Impacts ; 25(3): 472-483, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36722905

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of thousands of highly fluorinated, anthropogenic compounds that are used in a wide variety of consumer applications. Due to their widespread use and high persistence, PFAS are ubiquitous in drinking water, which is of concern due to the threats these compounds pose to human health. Reduction via the hydrated electron is a promising technology for PFAS remediation and has been well-studied. However, since previous work rarely reports fluorine atom balances and often relies on suspect screening, some transformation products are likely unaccounted for. Therefore, we performed non-target analysis using high-resolution mass spectrometry on solutions of perfluorooctanesulfonate (PFOS), perfluorobutanesulfonate (PFBS), perfluorooctanoate (PFOA), and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy)propanoate (GenX) that had been treated with UV/sulfite to produce hydrated electrons. We determined fluorine atom balances for all compounds studied, finding high fluorine atom balances for PFOS and PFBS. PFOA and GenX had lower overall fluorine atom balances, likely due to the production of volatile or very polar transformation products that were not measured by our methods. Transformation products identified by our analysis were consistent with literature, with a few exceptions. Namely, shorter-chain perfluorosulfonates (PFSA) and their H/F substituted counterparts were also detected from PFOS. This is an unexpected result based on literature, as no documented pathway exists for the formation of shorter-chain PFSA during UV/sulfite treatment. Furthermore, the nontarget approach we employed allowed for identification of novel, unsaturated products from the hydrated electron treatment of perfluorooctanesulfonate (PFOS) that warrant further investigation.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Humans , Fluorine , Fluorocarbons/analysis , Sulfites
4.
bioRxiv ; 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36711447

ABSTRACT

Prior research has focused on host factors as mediators of exaggerated sepsis-associated morbidity and mortality in older adults. This focus on the host, however, has failed to identify therapies that improve sepsis outcomes in the elderly. We hypothesized that the increased susceptibility of the aging population to sepsis is not only a function of the host, but also reflects longevity-associated changes in the virulence of gut pathobionts. We utilized two complementary models of gut microbiota-induced experimental sepsis to establish the aged gut microbiome as a key pathophysiologic driver of heightened disease severity. Further murine and human investigations into these polymicrobial bacterial communities demonstrated that age was associated with only subtle shifts in ecological composition, but an overabundance of genomic virulence factors that have functional consequence on host immune evasion. One Sentence Summary: The severity of sepsis in the aged host is in part mediated by longevity-associated increases in gut microbial virulence.

5.
Environ Sci Process Impacts ; 25(2): 277-287, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36189623

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are a class of ultra-persistent anthropogenic contaminants. PFAS are ubiquitous in environmental and built systems, but very few online methods exist for their characterization in atmospheric gases and aerosols. Iodide time-of-flight chemical ionization mass spectrometry (iodide-ToF-CIMS) is a promising technology for online characterization of PFAS in the atmosphere. Previous work using iodide-ToF-CIMS was successful in measuring gas-phase perfluoroalkyl carboxylic acids and fluorotelomer alcohols, but those are just two of the myriad classes of PFAS that are atmospherically relevant. Therefore, our first objective was to test other sample introduction methods coupled to iodide-TOF-CIMS to evaluate its ability to measure a wider suite of PFAS in both gas and aerosol phases. Using a variety of sample introduction techniques, we successfully measured gas-phase fluorotelomer alcohols (FTOHs), gas and aerosol-phase perfluoroalkyl carboxylic acids (PFCAs), and aerosol-phase perfluoroalkyl sulfonic acids and polyfluoroalkyl phosphoric acid diesters (PFSAs and diPAPs). We also determined iodide-ToF-CIMS response factors for these compounds by introducing known quantities using a Filter Inlet for Gases and AEROsols (FIGAERO). These response factors ranged from 400 to 6 × 104 ions per nanogram, demonstrating low limits of detection. Furthermore, PFAS are a poorly understood diverse class of molecules that exhibit unusual and often unexpected physicochemical properties due to their highly fluorinated nature. Since detection of PFAS with iodide-ToF-CIMS relies on the analyte molecule to either undergo proton transfer or adduct formation with iodide, understanding PFAS behavior during chemical ionization gives rise to a more fundamental understanding of these compounds. Through voltage scanning experiments and DFT calculations, we found that PFCAs and FTOHs readily form iodide adducts, while PFSAs and diPAPs preferentially undergo proton transfer to iodide. Generally, binding energy increased with increasing linear chain length, and PFCAs had stronger binding than FTOHs. Overall, our results suggest that iodide-ToF-CIMS can be used to measure even nonvolatile PFAS such as PFSAs and diPAPs in the aerosol phase in a semi-continuous online fashion.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Environmental Monitoring/methods , Iodides/analysis , Protons , Fluorocarbons/analysis , Carboxylic Acids/analysis , Mass Spectrometry , Water Pollutants, Chemical/analysis
6.
Nat Commun ; 13(1): 6379, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36316310

ABSTRACT

Despite the importance of high-latitude surface energy budgets (SEBs) for land-climate interactions in the rapidly changing Arctic, uncertainties in their prediction persist. Here, we harmonize SEB observations across a network of vegetated and glaciated sites at circumpolar scale (1994-2021). Our variance-partitioning analysis identifies vegetation type as an important predictor for SEB-components during Arctic summer (June-August), compared to other SEB-drivers including climate, latitude and permafrost characteristics. Differences among vegetation types can be of similar magnitude as between vegetation and glacier surfaces and are especially high for summer sensible and latent heat fluxes. The timing of SEB-flux summer-regimes (when daily mean values exceed 0 Wm-2) relative to snow-free and -onset dates varies substantially depending on vegetation type, implying vegetation controls on snow-cover and SEB-flux seasonality. Our results indicate complex shifts in surface energy fluxes with land-cover transitions and a lengthening summer season, and highlight the potential for improving future Earth system models via a refined representation of Arctic vegetation types.


Subject(s)
Ecosystem , Permafrost , Seasons , Arctic Regions , Climate Change
7.
PLoS One ; 17(9): e0273194, 2022.
Article in English | MEDLINE | ID: mdl-36137079

ABSTRACT

Severe viral respiratory diseases, such as SARS-CoV-2, are transmitted through aerosol particles produced by coughing, talking, and breathing. Medical procedures including tracheal intubation, extubation, dental work, and any procedure involving close contact with a patient's airways can increase exposure to infectious aerosol particles. This presents a significant risk for viral exposure of nearby healthcare workers during and following patient care. Previous studies have examined the effectiveness of plastic enclosures for trapping aerosol particles and protecting health-care workers. However, many of these enclosures are expensive or are burdensome for healthcare workers to work with. In this study, a low-cost plastic enclosure was designed to reduce aerosol spread and viral transmission during medical procedures, while also alleviating issues found in the design and use of other medical enclosures to contain aerosols. This enclosure is fabricated from clear polycarbonate for maximum visibility. A large single-side cutout provides health care providers with ease of access to the patient with a separate cutout for equipment access. A survey of medical providers in a local hospital network demonstrated their approval of the enclosure's ease of use and design. The enclosure with appropriate plastic covers reduced total escaped particle number concentrations (diameter > 0.01 µm) by over 93% at 8 cm away from all openings. Concentration decay experiments indicated that the enclosure without active suction should be left on the patient for 15-20 minutes following a tracheal manipulation to allow sufficient time for >90% of aerosol particles to settle upon interior surfaces. This decreases to 5 minutes when 30 LPM suction is applied. This enclosure is an inexpensive, easily implemented additional layer of protection that can be used to help contain infectious or otherwise potentially hazardous aerosol particles while providing access into the enclosure.


Subject(s)
COVID-19 , Infectious Disease Transmission, Patient-to-Professional , Aerosolized Particles and Droplets , COVID-19/prevention & control , Humans , Infectious Disease Transmission, Patient-to-Professional/prevention & control , Plastics , Respiratory Aerosols and Droplets , SARS-CoV-2
9.
Environ Sci Atmos ; 2(1): 85-99, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35178522

ABSTRACT

Volcanic ash nucleates ice when immersed in supercooled water droplets, giving it the potential to influence weather and climate from local to global scales. This ice nucleation activity (INA) is likely derived from a subset of the crystalline mineral phases in the ash. The INA of other mineral-based dusts can change when exposed to various gaseous and aqueous chemical species, many of which also interact with volcanic ash in the eruption plume and atmosphere. However, the effects of aqueous chemical aging on the INA of volcanic ash have not been explored. We show that the INA of two mineralogically distinct ash samples from Fuego and Astroni volcanoes is variably reduced following immersion in water or aqueous sulfuric acid for minutes to days. Aging in water decreases the INA of both ash samples by up to two orders of magnitude, possibly due to a reduction in surface crystallinity and cation availability accompanying leaching. Aging in sulfuric acid leads to minimal loss of INA for Fuego ash, which is proposed to reflect a quasi-equilibrium between leaching that removes ice-active sites and dissolution that reveals or creates new sites on the pyroxene phases present. Conversely, exposure to sulfuric acid reduces the INA of Astroni ash by one to two orders of magnitude, potentially through selective dissolution of ice-active sites associated with surface microtextures on some K-feldspar phases. Analysis of dissolved element concentrations in the aged ash leachates shows supersaturation of certain mineral species which could have precipitated and altered the INA of the ash. These results highlight the key role that leaching, dissolution, and precipitation likely play in the aqueous aging of volcanic ash with respect to its INA. Finally, we discuss the implications for understanding the nature and reactivity of ice-active sites on volcanic ash and its role in influencing cloud properties in the atmosphere.

10.
Matrix Biol Plus ; 12: 100094, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34917925

ABSTRACT

The glycocalyx is a ubiquitous structure found on endothelial cells that extends into the vascular lumen. It is enriched in proteoglycans, which are proteins attached to the glycosaminoglycans heparan sulfate, chondroitin sulfate, dermatan sulfate, keratan sulfate, and hyaluronic acid. In health and disease, the endothelial glycocalyx is a central regulator of vascular permeability, inflammation, coagulation, and circulatory tonicity. During sepsis, a life-threatening syndrome seen commonly in hospitalized patients, the endothelial glycocalyx is degraded, significantly contributing to its many clinical manifestations. In this review we discuss the intrinsically linked mechanisms responsible for septic endothelial glycocalyx destruction: glycosaminoglycan degradation and proteoglycan cleavage. We then examine the consequences of local endothelial glycocalyx loss to several organ systems and the systemic consequences of shed glycocalyx constituents. Last, we explore clinically relevant non-modifiable and modifiable factors that exacerbate or protect against endothelial glycocalyx shedding during sepsis.

11.
Sci Adv ; 7(9)2021 Feb.
Article in English | MEDLINE | ID: mdl-33627419

ABSTRACT

Ice-nucleating particles (INPs) in biomass-burning aerosol (BBA) that affect cloud glaciation, microphysics, precipitation, and radiative forcing were recently found to be driven by the production of mineral phases. BBA experiences extensive chemical aging as the smoke plume dilutes, and we explored how this alters the ice activity of the smoke using simulated atmospheric aging of authentic BBA in a chamber reactor. Unexpectedly, atmospheric aging enhanced the ice activity for most types of fuels and aging schemes. The removal of organic carbon particle coatings that conceal the mineral-based ice-active sites by evaporation or oxidation then dissolution can increase the ice activity by greater than an order of magnitude. This represents a different framework for the evolution of INPs from biomass burning where BBA becomes more ice active as it dilutes and ages, making a larger contribution to the INP budget, resulting cloud microphysics, and climate forcing than is currently considered.

12.
Glob Chang Biol ; 27(2): 376-387, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33118303

ABSTRACT

Warming in the Arctic has been more apparent in the non-growing season than in the typical growing season. In this context, methane (CH4 ) emissions in the non-growing season, particularly in the shoulder seasons, account for a substantial proportion of the annual budget. However, CH4 emissions in spring and autumn shoulders are often underestimated by land models and measurements due to limited data availability and unknown mechanisms. This study investigates CH4 emissions during spring thaw and autumn freeze using eddy covariance CH4 measurements from three Arctic sites with multi-year observations. We find that the shoulder seasons contribute to about a quarter (25.6 ± 2.3%, mean ± SD) of annual total CH4 emissions. Our study highlights the three to four times higher contribution of autumn freeze CH4 emission to total annual emission than that of spring thaw. Autumn freeze exhibits significantly higher CH4 flux (0.88 ± 0.03 mg m-2  hr-1 ) than spring thaw (0.48 ± 0.04 mg m-2  hr-1 ). The mean duration of autumn freeze (58.94 ± 26.39 days) is significantly longer than that of spring thaw (20.94 ± 7.79 days), which predominates the much higher cumulative CH4 emission during autumn freeze (1,212.31 ± 280.39 mg m-2  year-1 ) than that during spring thaw (307.39 ± 46.11 mg m-2  year-1 ). Near-surface soil temperatures cannot completely reflect the freeze-thaw processes in deeper soil layers and appears to have a hysteresis effect on CH4 emissions from early spring thaw to late autumn freeze. Therefore, it is necessary to consider commonalities and differences in CH4 emissions during spring thaw versus autumn freeze to accurately estimate CH4 source from tundra ecosystems for evaluating carbon-climate feedback in Arctic.


Subject(s)
Ecosystem , Methane , Arctic Regions , Seasons , Soil , Tundra
13.
Acc Chem Res ; 53(11): 2498-2509, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-33035055

ABSTRACT

ConspectusAerosol particles represent unique chemical environments because of their high surface area-to-volume ratio that promotes the effects of interfacial chemistry in confined environments. Properties such as viscosity, diffusivity, water content, pH, and morphology-following liquid-liquid phase separation-can strongly alter how a particle interacts with condensable vapors and reactive trace gases, thus modifying its continual evolution and environmental effects. Our understanding of this chemical evolution of atmospheric particulate matter and its environmental impacts is largely limited by our ability to directly observe how these critical particle properties respond to the addition or reactive uptake of new chemical components. Aerosol optical tweezers (AOT) stably trap particles in focused laser beams, providing positional control and the retrieval of many of these critical properties required to understand and predict the chemistry of aerosolized microdroplets. The analytical power of the AOT stems from the retrieval of the cavity-enhanced Raman spectrum induced by the trapping laser. Analysis of the whispering gallery modes (WGMs) that resonate as a standing wave around the droplet's interface, provide high accuracy measurements of the droplet's size, refractive index (and thus a measurement of composition), and can distinguish between core-shell, partially engulfed, and homogeneous morphologies. We have advanced the ability to determine the properties of the core and shell phases in biphasic droplets, including obtaining high-accuracy pH measurements. These capabilities were applied to perform AOT physical chemistry experiments on authentic secondary organic aerosol (SOA) produced directly in the AOT chamber by ozonolysis of terpene vapors. The propensity of the SOA to phase separate as a shell from a wide range of nonpolar to polar core phases was observed, along with the discovery of a stable emulsified state of SOA particles in an aqueous salt droplet. Micron-thick SOA shells did not impede the gain or loss of water or squalane from the core to the surrounding air, indicating no significant diffusional limitations to condensational growth or partitioning even under dry conditions. These experiments formed the foundation of a new framework that predicts how the phase-separated morphology of complex aerosols containing organic carbon evolves during continual atmospheric oxidation processes. Increases in oxidation state will quickly drive conversion from a partially engulfed to core-shell morphology that has dramatically different chemical reactivity since the core phase is completely concealed by the shell. The recent advances in the experimental capabilities of the AOT technique such as presented here enable novel experimental methodologies that provide insights into the chemistry and multidimensional properties of aerosol microdroplets, and how these coevolve and respond to continual chemical reactions.

14.
Proc Natl Acad Sci U S A ; 117(36): 21928-21937, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32839314

ABSTRACT

Ice nucleation and the resulting cloud glaciation are significant atmospheric processes that affect the evolution of clouds and their properties including radiative forcing and precipitation, yet the sources and properties of atmospheric ice nucleants are poorly constrained. Heterogeneous ice nucleation caused by ice-nucleating particles (INPs) enables cloud glaciation at temperatures above the homogeneous freezing regime that starts near -35 °C. Biomass burning is a significant global source of atmospheric particles and a highly variable and poorly understood source of INPs. The nature of these INPs and how they relate to the fuel composition and its combustion are critical gaps in our understanding of the effects of biomass burning on the environment and climate. Here we show that the combustion process transforms inorganic elements naturally present in the biomass (not soil or dust) to form potentially ice-active minerals in both the bottom ash and emitted aerosol particles. These particles possess ice-nucleation activities high enough to be relevant to mixed-phase clouds and are active over a wide temperature range, nucleating ice at up to -13 °C. Certain inorganic elements can thus serve as indicators to predict the production of ice nucleants from the fuel. Combustion-derived minerals are an important but understudied source of INPs in natural biomass-burning aerosol emissions in addition to lofted primary soil and dust particles. These discoveries and insights should advance the realistic incorporation of biomass-burning INPs into atmospheric cloud and climate models. These mineral components produced in biomass-burning aerosol should also be studied in relation to other atmospheric chemistry processes, such as facilitating multiphase chemical reactions and nutrient availability.


Subject(s)
Aerosols/chemistry , Coal Ash/chemistry , Ice Cover/chemistry , Minerals/chemistry , Atmosphere/chemistry , Biomass , Climate Change , Freezing , Ice/analysis , Particle Size , Wildfires
15.
Environ Health Perspect ; 128(1): 17009, 2020 01.
Article in English | MEDLINE | ID: mdl-31934794

ABSTRACT

BACKGROUND: Most epidemiological studies address health effects of atmospheric particulate matter (PM) using mass-based measurements as exposure surrogates. However, this approach ignores many critical physiochemical properties of individual atmospheric particles. These properties control the deposition of particles in the human lung and likely their toxicity; in addition, they likely have larger spatial variability than PM mass. OBJECTIVES: This study was designed to quantify the spatial variability in number, size, source, and chemical mixing state of individual particles in a populous urban area. We quantified the population exposure to these detailed particle properties and compared them to mass-based exposures. METHODS: We performed mobile sampling using an advanced single-particle mass spectrometer to measure the spatial variability of number concentration of source-resolved 50-1,000 nm particles and particle mixing state in Pittsburgh, Pennsylvania. We built land-use regression (LUR) models to estimate their spatial patterns and coupled them with demographic data to estimate population exposure. RESULTS: Particle number concentration had a much larger spatial variability than mass concentration within the city. Freshly emitted particles from traffic and cooking drive the variability in particle number, but mass concentrations are dominated by aged background particles composed of secondary materials. In addition, people exposed to elevated number concentrations of atmospheric particles are also exposed to more externally mixed particles. CONCLUSIONS: Our advanced measurement technique provides a new exposure picture that resolves the large intra-city spatial heterogeneity in traffic and cooking particle number concentrations in the populous urban area. Our results provide a complementary and more detailed perspective compared with bulk measurements of composition. In addition, given the influence of particle mixing state on properties such as particle deposition in the lung, the large spatial gradients of chemical mixing state may significantly influence the health effects of fine PM. https://doi.org/10.1289/EHP5311.


Subject(s)
Air Pollution/statistics & numerical data , Environmental Exposure/statistics & numerical data , Particulate Matter , Air Pollutants , Environmental Monitoring , Vehicle Emissions
16.
Oncogene ; 39(1): 219-233, 2020 01.
Article in English | MEDLINE | ID: mdl-31471585

ABSTRACT

Elevated CUB-domain containing protein 1 (CDCP1) is predictive of colorectal cancer (CRC) recurrence and poor patient survival. While CDCP1 expression identifies stem cell populations that mediate lung metastasis, mechanisms underlying the role of this cell surface receptor in CRC have not been defined. We sought to identify CDCP1 regulated processes in CRC using stem cell populations, enriched from primary cells and cell lines, in extensive in vitro and in vivo assays. These experiments, demonstrating that CDCP1 is functionally important in CRC tumor initiation, growth and metastasis, identified CDCP1 as a positive regulator of Wnt signaling. Detailed cell fractionation, immunoprecipitation, microscopy, and immunohistochemical analyses demonstrated that CDCP1 promotes translocation of the key regulators of Wnt signaling, ß-catenin, and E-cadherin, to the nucleus. Of functional importance, disruption of CDCP1 reduces nuclear localized, chromatin-associated ß-catenin and nuclear localized E-cadherin, increases sequestration of these proteins in cell membranes, disrupts regulation of CRC promoting genes, and reduces CRC tumor burden. Thus, disruption of CDCP1 perturbs pro-cancerous Wnt signaling including nuclear localization of ß-catenin and E-cadherin.


Subject(s)
Antigens, Neoplasm/genetics , Cadherins/genetics , Cell Adhesion Molecules/genetics , Colorectal Neoplasms/genetics , beta Catenin/genetics , Active Transport, Cell Nucleus/genetics , Carcinogenesis/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic/genetics , HCT116 Cells , Humans , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Wnt Signaling Pathway/genetics
17.
Anal Chem ; 92(1): 1089-1096, 2020 01 07.
Article in English | MEDLINE | ID: mdl-31760745

ABSTRACT

The pH of microscale reaction environments controls numerous physicochemical processes, requiring a real-time pH microprobe. We present highly accurate real-time pH measurements of microdroplets using aerosol optical tweezers (AOT) and analysis of the whispering gallery modes (WGMs) contained in the cavity-enhanced Raman spectra. Uncertainties ranging from ±0.03 to 0.06 in pH for picoliter droplets are obtained through averaging Raman frames acquired at 0.5 Hz over 3.3 min. The high accuracy in pH determination is achieved by combining two independent measurements uniquely provided by the AOT approach: the anion concentration ratio from the spontaneous Raman spectra, and the total solute concentration from the refractive index retrieved from WGM analysis of the stimulated cavity-enhanced Raman spectra. pH can be determined over a range of -0.36 to 0.76 using the aqueous sodium bisulfate system. This technique enables direct measurements of pH-dependent chemical and physical changes experienced by individual microparticles and exploration of the role of pH in the chemical behavior of confined microenvironments.

18.
Environ Sci Process Impacts ; 21(10): 1684-1698, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31580371

ABSTRACT

We examined the reactive uptake of dinitrogen pentoxide (N2O5) to authentic biomass-burning aerosol (BBA) using a small chamber reservoir in combination with an entrained aerosol flow tube. BBA was generated from four different fuel types and the reactivity of N2O5 was probed from 30 to 70% relative humidity (RH). The N2O5 reactive uptake coefficient, γ(N2O5), depended upon RH, fuel type, and to a lesser degree on aerosol chloride mass fractions. The γ(N2O5) ranged from 2.0 (±0.4) ×10-3 on black needlerush derived BBA at 30% RH to 6.0 (±0.6) ×10-3 on wiregrass derived BBA at 65% RH. Major N2O5 reaction products were observed including gaseous ClNO2 and HNO3 and particulate nitrate, and used to create a reactive nitrogen budget. Black needlerush BBA had the most particulate chloride, and the only measured ClNO2 yield > 1%. The ClNO2 yield on black needlerush decayed from an initial value of ∼100% to ∼30% over the course of the burn experiment, suggesting a depletion of BBA chloride over time. Black needlerush was also the only fuel for which the reactive nitrogen budget indicated other N-containing products were generated. Generally, the results suggest limited chloride availability for heterogeneous reaction for BBA in the RH range probed here, including BBA with chloride mass fractions on the higher end of previously reported values (∼17-34%). Though less than fresh sea spray aerosol, ∼50%. We use these measured quantities to discuss the implications for nocturnal aerosol nitrate formation, the chemical fate of N2O5(g), and the availability of particulate chloride for activation in biomass burning plumes.


Subject(s)
Aerosols/chemistry , Chlorine/chemistry , Nitrogen Oxides/chemistry , Biomass , Climate Change , Kinetics , Nitrogen Oxides/analysis , Wildfires
19.
J Phys Chem A ; 123(17): 3887-3892, 2019 May 02.
Article in English | MEDLINE | ID: mdl-30950612

ABSTRACT

Atmospheric organic aerosols comprise complex mixtures of a myriad of compounds with a wide range of structures and volatilities. To understand the fate of atmospheric organic aerosols and their contribution to particulate matter pollution, we need to study the relative portion divided between semivolatile organic compounds (SVOCs) and low-volatility organic compounds (LVOCs). SVOCs can effectively migrate and exchange between aerosol populations and thus are more accessible for further reactions and removal processes, while LVOCs will essentially stay in the particle phase. Here, we introduce using ionic liquid droplets as novel sorbents for organic vapors in smog chamber experiments to study the transfer of constituents between aerosol populations and to separate SVOCs and LVOCs from chamber-produced secondary organic aerosols (SOAs). SOA was formed and condensed on the ammonium-sulfate seeds, and later ionic liquid droplets were introduced into the chamber. We show that there are considerable yields of both LVOCs and SVOCs produced from α-pinene ozonolysis, and the uptake of SVOCs into the ionic liquid increases as the amount of reacted α-pinene increases. We also show that the SVOCs absorbed into the ionic liquid re-evaporate more readily compared to SOA originally condensed on the ammonium-sulfate seeds. We are thus able to differentiate the semivolatile components that partition into the extremely polar ionic liquid aerosols from the demonstrably less volatile components also condensed on the ammonium-sulfate seeds. Combined with previous studies using other organic aerosols as solvents to probe SVOC transfer between aerosol populations, we provide a wide set of measurements to probe and constrain the physical and thermodynamic properties of chamber-produced SOA complex.

20.
Environ Sci Process Impacts ; 20(11): 1512-1523, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-29897369

ABSTRACT

We present a new algorithm for the analysis of whispering gallery modes (WGMs) found in the cavity enhanced Raman spectra retrieved from optically tweezed droplets. Our algorithm improves the computational scaling when analyzing core-shell droplets (i.e. phase-separated or biphasic droplets) in the aerosol optical tweezers (AOT), making it computationally practical to analyze spectra collected at a few Hz over hours-long experiments. This enables the determination of the size and refractive index of both the core and shell phases with high accuracy, at 0.5 Hz time resolution. Phase-separated core-shell droplets are common morphologies in a wide variety of biophysical, colloidal, and aerosolized chemical systems, and have recently become a major focus in understanding the atmospheric chemistry of particulate matter. Our new approach reduces the number of parameters directly searched for, decreasing computational demands. We assess the accuracy of the diameters and refractive indices retrieved from a homogeneous or core-shell droplet. We demonstrate the performance of the new algorithm using experimental data from a droplet of aqueous glycerol coated by squalane. We demonstrate that a shell formation causes adjacent WGMs to split from each other in their wavenumber position through the addition of a secondary organic aerosol shell around a NaCl(aq) droplet. Our new algorithm paves the way for more in-depth physiochemical experiments into liquid-liquid phase separation and their consequences for interfacial chemistry-a topic with growing experimental needs for understanding the dynamics and chemistry of atmospheric aerosol particles, and in biochemical systems.


Subject(s)
Aerosols/chemistry , Glycerol/chemistry , Squalene/analogs & derivatives , Algorithms , Optical Tweezers , Particulate Matter/chemistry , Refractometry , Spectrum Analysis, Raman , Squalene/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...