Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Biochem Biophys ; 683: 108276, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31978400

ABSTRACT

A Pseudomonas CoA ligase (BadA) biocatalyzed aroyl CoA thioesters used by a downstream N-benzoyltransferase (NDTNBT) in a cascade reaction made aroyl analogs of the anticancer drug paclitaxel. BadA kept the high-cost aroyl CoA substrates at saturation for the downstream NDTNBT by recycling CoA when it was added as the limiting reactant. A deacylated taxane substrate N-debenzoyl-2'-deoxypaclitaxel was converted to its benzoylated product at a higher yield, compared to the converted yield in assays in which the BadA ligase chemistry was omitted, and benzoyl CoA was added as a cosubstrate. The resulting benzoylated product 2'-deoxypaclitaxel was made at 196% over the theoretical yield of product that could be made from the CoA added at 50 µM, and the cosubstrates benzoic acid (100 µM), and N-debenzoyl-2'-deoxypaclitaxel (500 µM) added in excess. In addition, a 2-O-benzoyltransferase (mTBT) was incubated with BadA, aroyl acids, CoA, a 2-O-debenzoylated taxane substrate, and cofactors under the CoA-recycling conditions established for the NDTNBT/BadA cascade. The mTBT/BadA combination also made various 2-O-aroylated products that could potentially function as next-generation baccatin III compounds. These ligase/benzoyltransferase cascade reactions show the feasibility of recycling aroyl CoA thioesters in vitro to make bioactive acyl analogs of paclitaxel precursors.


Subject(s)
Alkaloids/chemistry , Antineoplastic Agents/chemistry , Coenzyme A Ligases/metabolism , Paclitaxel/analogs & derivatives , Taxoids/chemistry , Benzoic Acid/chemistry , Biocatalysis , Bridged-Ring Compounds , Carboxylic Acids/chemistry , Catalysis , Escherichia coli , Kinetics , Paclitaxel/chemistry , Rhodopseudomonas/enzymology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...