Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 15(5): e0232467, 2020.
Article in English | MEDLINE | ID: mdl-32357194

ABSTRACT

Basidiomata of Phallales have a diversified morphology with adhesive gleba that exudes an odor, usually unpleasant that attracts mainly insects, which disperse the basidiospores. The genus Blumenavia belongs to the family Clathraceae and, based on morphological features, only two species are currently recognized: B. rhacodes and B. angolensis. However, the morphological characters adopted in species delimitations within this genus are inconsistent, and molecular data are scarce. The present study aimed to review and identify informative characters that contribute to the delimitation of Blumenavia species. Exsiccates from America and Africa were analyzed morphologically, and molecularly, using ITS, LSU, ATP6, RPB2 and TEF-1α markers for Maximum Parsimony, Bayesian and Maximum likelihood analyses, and also for coalescent based species delimitations (BP&P), as well as for bPTP, PhyloMap, Topo-phylogenetic and Geophylogenetic reconstructions. According to our studies, seven species can be considered in the genus: B. rhacodes and B. angolensis are maintained, B. usambarensis and B. toribiotalpaensis are reassessed, and three new species are proposed, B. baturitensis Melanda, M.P. Martín & Baseia, sp. nov., B. crucis-hellenicae G. Coelho, Sulzbacher, Grebenc & Cortez, sp. nov., and B. heroica Melanda, Baseia & M.P. Martín, sp. nov. Blumenavia rhacodes is typified by selecting a lectotype and an epitype. Macromorphological characters considered informative to segregate and delimit the species through integrative taxonomy include length of the basidiomata, color, width and presence of grooves on each arm as well as the glebifer position and shape. These must be clearly observed while the basidiomata are still fresh. Since most materials are usually analyzed after dehydration and deposit in collections, field techniques and protocols to describe fugacious characters from fresh specimen are demanded, as well as the use of molecular analysis, in order to better assess recognition and delimitation of species in Blumenavia.


Subject(s)
Basidiomycota/classification , Basidiomycota/cytology , Basidiomycota/genetics , Bayes Theorem , Brazil , DNA, Fungal/genetics , Mexico , Phylogeny , Species Specificity , Spores, Fungal/cytology , Tanzania
2.
MycoKeys ; 62: 53-73, 2020.
Article in English | MEDLINE | ID: mdl-32076382

ABSTRACT

A new monotypic sequestrate genus, Longistriata is described based on collections from the Neotropical forest of Atlantic forest in Paraíba, Northeast Brazil - an area known for its high degree of endemism. The striking features of this new fungus are the hypogeous habit, the vivid yellow peridium in mature basidiomes, broadly ellipsoid basidiospores with a distinct wall that is ornamented with longitudinal striations and lageniform cystidia with rounded apices. Phylogenetic analysis, based on LSU and tef-1α regions, showed that the type species, Longistriata flava, is phylogenetically sister to the monotypic sequestrate African genus Mackintoshia in Boletaceae. Together these two species formed the earliest diverging lineage in the subfamily Zangioideae. Longistriata flava is found in nutrient-poor white sand habitats where plants in the genera Coccoloba (Polygonaceae) and Guapira (Nyctaginaceae) are the only potential ectomycorrhizal host symbionts.

3.
Mycologia ; 110(4): 780-790, 2018.
Article in English | MEDLINE | ID: mdl-30130456

ABSTRACT

Truffles are sequestrate hypogeous fungi, and most form ectomycorrhizal (ECM) associations with trees. Truffles belonging to the genus Tuber (Pezizales, Ascomycota), "true truffles," associate with diverse plant hosts, including economically important species such as pecan (Carya illinoinensis). Morphological and phylogenetic studies delimited several major lineages of Tuber, which include many cryptic and undescribed species. One of these, the Maculatum clade, is a speciose group characterized by relatively small, light-colored ascomata that have alveolate-reticulate spores. Here, we describe two new species in the Maculatum clade, Tuber brennemanii and T. floridanum (previously identified as Tuber sp. 36 and Tuber sp. 47). We delineate these two species by phylogenetic analyses of nuc ITS1-5.8S-ITS2 (= ITS) and partial 28S rDNA (= LSU), and through morphological analysis. A recent collection of T. floridanum from a pecan orchard in Brazil indicates that this species was introduced there on the roots of pecan seedlings. Systematic studies of ascomata and ECM fungal communities indicate that these species are geographically widespread and common ECM symbionts of pecans and other members of the Fagales, particularly in sites with disturbed soils and nutrient enrichment.


Subject(s)
Carya/microbiology , Mycorrhizae/classification , Mycorrhizae/genetics , Biodiversity , Brazil , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Mycorrhizae/isolation & purification , Mycorrhizae/ultrastructure , Phylogeny , Plant Roots/microbiology , Seedlings/microbiology
5.
Mycologia ; 108(5): 954-966, 2016 09.
Article in English | MEDLINE | ID: mdl-27549616

ABSTRACT

Restingomyces reticulatus gen. et sp. nov. is a recently discovered false truffle species from Atlantic "restinga" rainforest in northeastern Brazil. Molecular and morphological characters separate this new sequestrate species from other described taxa in the order Phallales (Phallomycetidae, Basidiomycota). In our phylogenetic analysis based on nuc 28S rDNA and atp6, R. reticulatus forms a sister clade to Trappea darkeri and Phallobata alba, with the three taxa forming the earliest diverging lineage within Phallales. Morphological and molecular data warrant the recognition of the new genus and species, described here, and we also amend the taxonomic description for the family Trappeaceae.


Subject(s)
Basidiomycota/classification , Basidiomycota/isolation & purification , Basidiomycota/cytology , Basidiomycota/genetics , Biometry , Brazil , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Microscopy , Mitochondrial Proton-Translocating ATPases/genetics , Photography , Phylogeny , RNA, Ribosomal, 28S/genetics , Rainforest , Sequence Analysis, DNA
6.
Mycorrhiza ; 26(5): 377-88, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26763005

ABSTRACT

The genus Rhizopogon includes species with hypogeous or subepigeus habit, forming ectomycorrhizae with naturally occurring or planted pines (Pinaceae). Species of the genus Rhizopogon can be distinguished easily from the other hypogeous basidiomycetes by their lacunose gleba without columella and their smooth elliptical spores; however, the limit between species is not always easy to establish. Rhizopogon luteolus, the type species of the genus, has been considered one of the species that are more abundant in Europe, as well as it has been cited in pine plantation of North and South America, different parts of Africa, Australia, and New Zealand. However, in this study, based on molecular analyses of the ITS nuclear ribosomal DNA (nrDNA) sequences (19 new sequences; 37 sequences from GenBank/UNITE, including those from type specimens), we prove that many GenBank sequences under R. luteolus were misidentified and correspond to Rhizopogon verii, a species described from Tunisia. Also, we confirm that basidiomes and ectomycorrhizae recently collected in Germany under Pinus sylvestris, as well as specimens from South of Brazil under Pinus taeda belong to R. verii. Thanks to the numerous ectomycorrhizal tips collected in Germany, a complete description of R. verii/P. sylvestris ectomycorrhiza is provided. Moreover, since in this paper the presence of R. verii in South America is here reported for the first time, a short description of basidiomes collected in Brazil, compared with collections located in different European herbaria, is included.


Subject(s)
Basidiomycota/classification , Basidiomycota/genetics , Mycorrhizae/classification , Mycorrhizae/genetics , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , Europe , Phylogeny , Pinus/microbiology , South America
7.
Fungal Biol ; 117(9): 584-98, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24012299

ABSTRACT

Phylogenetic studies indicate that the basidiolichen genus Dictyonema s.lat., often thought to represent only a single genus with few species, includes several well-supported genus-level clades, all of which form associations with a unique lineage of obligately lichenized cyanobacteria (Rhizonema). In an attempt to elucidate the evolution and genus- and species-level diversification in Dictyonema s.lat., we generated 68 new sequences of the nuclear large subunit rDNA (nuLSU), the internal transcribed spacer (ITS), and the RNA polymerase II subunit (RPB2), for 29 species-level lineages representing all major clades of Dictyonema s.lat. and most of the species currently known. The multilocus phylogeny obtained via maximum likelihood and Bayesian approaches indicates the presence of five genus-level groups: a basal clade, Cyphellostereum, that is sister to the rest of the species, a paraphyletic grade representing Dictyonema s.str., and three clades representing the genera Acantholichen, Cora, and Corella. To determine the evolutionary transformations of the lichenized thallus in the group, ancestral character state reconstruction was done using six characters (lichenisation, thallus type, cortex type, hyphal sheath and haustorial type, photobiont morphology, and basidiocarp type). Our analysis indicates a progressive development of the lichenized thallus from loosely organized filamentous crusts with separate, cyphelloid basidiocarps in Cyphellostereum, to filamentous crusts with derived hyphal sheath and cyphelloid-stereoid basidiocarps partially incorporated into the lichen thallus in Dictyonema, to squamulose-foliose thalli with corticioid basidiocarps entirely supported by the lichen thallus in Cora. These results indicate a remarkable evolutionary integration of lichenized and reproductive tissues in Dictyonema s.lat., supporting the hypothesis that, at least in this case, lichenized thalli may have evolved from reproductive structures in their nonlichenized ancestors.


Subject(s)
Agaricales/classification , Agaricales/growth & development , Biota , Cluster Analysis , DNA, Fungal/chemistry , DNA, Fungal/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Genes, rRNA , Molecular Sequence Data , Phylogeny , RNA Polymerase II/genetics , RNA, Fungal/genetics , RNA, Ribosomal/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL