Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 29(24): 40333-40344, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34809377

ABSTRACT

Short-pulse metrology and dynamic studies in the extreme ultraviolet (XUV) spectral range greatly benefit from interferometric measurements. In this contribution a Michelson-type all-reflective split-and-delay autocorrelator operating in a quasi amplitude splitting mode is presented. The autocorrelator works under a grazing incidence angle in a broad spectral range (10 nm - 1 µm) providing collinear propagation of both pulse replicas and thus a constant phase difference across the beam profile. The compact instrument allows for XUV pulse autocorrelation measurements in the time domain with a single-digit attosecond precision and a useful scan length of about 1 ps enabling a decent resolution of E/ΔE = 2000 at 26.6 eV. Its performance for selected spectroscopic applications requiring moderate resolution at short wavelengths is demonstrated by characterizing a sharp electronic transition at 26.6 eV in Ar gas. The absorption of the 11th harmonic of a frequency-doubled Yb-fiber laser leads to the well-known 3s3p64p1P1 Fano resonance of Ar atoms. We benchmark our time-domain interferometry results with a high-resolution XUV grating spectrometer and find an excellent agreement. The common-path interferometer opens up new opportunities for short-wavelength femtosecond and attosecond pulse metrology and dynamic studies on extreme time scales in various research fields.

2.
Struct Dyn ; 6(3): 034301, 2019 May.
Article in English | MEDLINE | ID: mdl-31123698

ABSTRACT

The ultrafast electronic decay of HCl molecules in the time domain after resonant core excitation was measured. Here, a Cl-2p core electron was promoted to the antibonding σ* orbital initiating molecular dissociation, and simultaneously, the electronic excitation relaxes via an Auger decay. For HCl, both processes compete on similar ultrashort femtosecond time scales. In order to measure the lifetime of the core hole excitation, we collinearly superimposed 40 fs soft x-ray pulses with intense terahertz (THz) radiation from the free-electron laser in Hamburg (FLASH). Electrons emitted from the molecules are accelerated (streaked) by the THz electric field where the resulting momentum change depends on the field's phase at the instant of ionization. Evaluation of a time-shift between the delay-dependent streaking spectra of photo- and Auger electrons yields a decay constant of (11 ± 2) fs for LMM Auger electrons. For further validation, the method was also applied to the MNN Auger decay of krypton. Reproduction of the value already published in the literature confirms that a temporal resolution much below the duration of the exciting x-ray pulses can be reached.

SELECTION OF CITATIONS
SEARCH DETAIL
...