Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 695: 149394, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38157629

ABSTRACT

In addition to its role in pyroptosis and inflammatory cytokine maturation, caspase-4 (CASP4) also contributes to the fusion of phagosomes with lysosomes and cell migration. However, its role in cell division remains elusive. In this study, we demonstrate that CASP4 is indispensable for proper cell division in epithelial cells. Knockout of CASP4 (CASP4 KO) in HepG2 cells led to delayed cell proliferation, increased cell size, and increased multinucleation. In mitosis, CASP4 KO cells showed multipolar spindles, asymmetric spindle positioning, and chromosome segregation errors, ultimately increasing DNA content and chromosome number. We also found that phalloidin, a marker of filamentous actin, increased in CASP4 KO cells owing to suppressed actin depolymerization. Moreover, the levels of actin polymerization-related proteins, including Rho-associated protein kinase1 (ROCK1), LIM kinase1 (LIMK1), and phosphorylated cofilin, significantly increased in CASP4 KO cells. These results suggest that CASP4 contributes to proper cell division through actin depolymerization.


Subject(s)
Actin Depolymerizing Factors , Actins , Actins/metabolism , Actin Depolymerizing Factors/metabolism , Cell Movement , Mitosis , Epithelial Cells/metabolism , Lim Kinases/genetics , Phosphorylation
2.
Cancer Sci ; 114(4): 1410-1422, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36529524

ABSTRACT

Inflammation is observed in many tumors, which affects metastasis, infiltration, and immune escape and causes poor differentiation of the cancer cells. However, the molecular basis underlying the relationship between inflammation and poor differentiation in tumors has not been identified. In this study, we demonstrate that angiopoietin-like protein-8 (ANGPTL8), which is induced by stress stimuli such as inflammation, is involved in the maintenance of the undifferentiated state of clear cell renal cell carcinoma (ccRCC) cells. ANGPTL8 is also involved in the production of chemokines that attract immune suppressor cells to the tumor microenvironment. ANGPTL8 sustains the continuous production of chemokines by activating the NF-κB signaling pathway and maintains the undifferentiated state of ccRCC cells. Finally, ANGPTL8 is induced by STAT3 signaling, which is activated by immune cells in the tumor microenvironment. These results support a role for ANGPTL8 in determining the properties of ccRCC by hampering tumor cell differentiation and establishing the tumor microenvironment.


Subject(s)
Angiopoietin-Like Protein 8 , Carcinoma, Renal Cell , Kidney Neoplasms , Peptide Hormones , Humans , Angiopoietin-Like Protein 8/genetics , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Cell Differentiation , Inflammation , Kidney Neoplasms/genetics , Peptide Hormones/metabolism , Tumor Microenvironment
3.
Int J Biochem Cell Biol ; 141: 106099, 2021 12.
Article in English | MEDLINE | ID: mdl-34673217

ABSTRACT

Inhalation of particulate matter with a diameter less than 2.5 µm has been reported to exacerbates fatty liver disease. However, the components and mechanisms of particulate matter involved in hepatic lipid metabolism and autophagy have not been fully elucidated. We found that atmospheric particulate matter in Japan stimulated lipogenesis in hepatocytes even when its lipid component was removed. Furthermore, we demonstrated that particulate matter did not promote autophagosome formation but inhibited autophagic degradation in hepatocytes. In previous toxicity experiments, particulate matter collected from atmosphere often contained contaminants originating from filters. In this study, we exposed the powdery particulate matter with less contaminants collected using a cyclone and impactor system to HepG2 cells, human hepatocyte. This particulate matter induced lipogenesis and endoplasmic reticulum stress in HepG2 cells as well as previous reports of particulate matter in the USA and China. On the other hand, when autophagic flux were examined in detail, the particulate matter did not promote autophagosome formation, but inhibited autophagic degradation. Since these effects were similar to those of palmitate, a fatty acid, we prepared particulate matter in which lipid component was removed by acetone and compared the effects on HepG2 cells with those of untreated one. The particulate matter without lipid component induced lipid droplets as well as did the untreated one although it induced less endoplasmic reticulum stress. These results suggest that hepatic lipid synthesis is stimulated not only by the uptake of lipid but also by other components in the particulate matter.


Subject(s)
Lipogenesis , Particulate Matter , Autophagy , Hep G2 Cells , Hepatocytes , Humans , Lipid Metabolism
4.
Med Mol Morphol ; 54(1): 60-67, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32607777

ABSTRACT

Hemochromatosis is a clinical syndrome characterized by iron overload in various organs. We present here a case of type 4 hereditary hemochromatosis due to heterozygous mutation in SLC40A1 gene (p.D157A). SLC40A1 encodes ferroportin, a macromolecule only known as iron exporter from mammalian cells. He first presented symptoms correlated with hypopituitarism. Furthermore, marked hyperferritinemia and high transferrin saturation were revealed in combination with the findings of iron overload in the liver, spleen and pituitary gland by computed tomography and magnetic resonance imaging. Liver biopsy revealed iron deposition in both hepatocytes and Kupffer cells. SLC40A1 mutations are considered to cause wide heterogeneity by various ferroportin mutations. Thus, clinicopathological examinations seem to be very important for diagnosing phenotype of type 4 hemochromatosis in addition to the gene analysis. We diagnosed him as type 4B hereditary hemochromatosis (ferroportin-associated hemochromatosis) by the findings of high transferrin saturation and iron deposition in hepatocytes, and then started iron chelating treatment. We should suspect the possibility of hereditary hemochromatosis even in Japanese with severe iron overload. Although the same mutation in SLC40A1 gene (p.D157A) had been reported to cause "loss of function" phenotype, we considered that the mutation of our case caused "gain of function" phenotype.


Subject(s)
Cation Transport Proteins/deficiency , Hemochromatosis/diagnosis , Hypopituitarism/diagnosis , Aged , Biopsy , Cation Transport Proteins/blood , Cation Transport Proteins/genetics , DNA Mutational Analysis , Hemochromatosis/blood , Hemochromatosis/complications , Hemochromatosis/genetics , Heterozygote , Humans , Hypopituitarism/blood , Hypopituitarism/genetics , Liver/diagnostic imaging , Liver/pathology , Liver Function Tests , Magnetic Resonance Imaging , Male , Pituitary Gland/diagnostic imaging , Tomography, X-Ray Computed
5.
Case Rep Gastroenterol ; 12(2): 487-496, 2018.
Article in English | MEDLINE | ID: mdl-30283282

ABSTRACT

Obesity is a major contributor to insulin resistance and nonalcoholic fatty liver disease, which is the most common cause of chronic liver diseases. Nonalcoholic steatohepatitis (NASH) can progress to liver cirrhosis and end-stage liver diseases. Some cases already show severe liver fibrosis at the time of diagnosis. We present the case of a 44-year-old male with overt obesity who was admitted with hematemesis due to the rupture of gastric varices. We diagnosed him with NASH with severe liver fibrosis. This case shows that we should be concerned about the progression of liver fibrosis due to NASH associated with severe obesity even in young patients.

SELECTION OF CITATIONS
SEARCH DETAIL
...