Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 6: 28022, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27311604

ABSTRACT

Organic-based solar cells potentially offer a photovoltaic module with low production costs and low hazard risk of the components. We report organic dye-sensitized solar cells, fabricated with molecular designed indoline dyes in conjunction with highly reactive but robust nitroxide radical molecules as redox mediator in a quasi-solid gel form of the electrolyte. The cells achieve conversion efficiencies of 10.1% at 1 sun, and maintain the output performance even under interior lighting. The indoline dyes, customized by introducing long alkyl chains, specifically interact with the radical mediator to suppress a charge-recombination process at the dye interface. The radical mediator also facilitates the charge-transport with remarkably high electron self-exchange rate even in the quasi-solid state electrolyte to lead to a high fill factor.

2.
J Am Chem Soc ; 126(39): 12218-9, 2004 Oct 06.
Article in English | MEDLINE | ID: mdl-15453726

ABSTRACT

We now report metal-free organic dyes having a new type of indoline structure, which exhibits high efficiencies in dye-sensitized solar cells. The solar energy to current conversion efficiencies with the new indoline dye was 6.51%. Under the same conditions, the N3 dye was 7.89% and the N719 dye was 8.26%. The new indoline dye was optimized for the amount of 4-tert-butyl pyridine in the electrolyte and cholic acid as a coadsorbent. Subsequently, the solar energy to current conversion efficiencies reached 8.00%. This value was the highest obtained efficiency for dye-sensitized solar cells based on metal-free organic dyes without an antireflection layer.

SELECTION OF CITATIONS
SEARCH DETAIL