Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters











Publication year range
1.
DNA Res ; 31(5)2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39115130

ABSTRACT

In the long history of human relations with flowering cherry trees in Japan, 'Somei-Yoshino' occupies an exceptional position among a variety of flowering trees: it is a self-incompatible interspecific hybrid but has been enthusiastically planted by grafting throughout Japan, due most likely to its flamboyant appearance upon full bloom. Thus, 'Somei-Yoshino' gives us a rare opportunity to trace and investigate the occurrence and distribution of somatic mutations within a single plant species through analysis of the genomes of the clonally propagated trees grown under a variety of geographical and artificial environments. In the studies presented here, a total of 46 samples of 'Somei-Yoshino' trees were collected and their genomes were analysed. We identified 684 single nucleotide mutations, of which 71 were present in more than two samples. Clustering analysis of the mutations indicated that the 46 samples were classified into eight groups, four of which included 36 of the 46 samples analysed. Interestingly, all the four tree samples collected in Ueno Park of Tokyo were members of the four groups mentioned above. Based on comparative analysis of their mutations, one of the four trees growing in Ueno Park was concluded to be the closest to the original ancestor. We propose that somatic mutations may be used as tracers to establish the ancestral relationship amongst clonally propagated individuals.


Subject(s)
Mutation , Genome, Plant , Japan , Prunus/genetics , Flowers/genetics , Phylogeny
2.
Hortic Res ; 9: uhac170, 2022.
Article in English | MEDLINE | ID: mdl-36324641

ABSTRACT

White rust caused by Puccinia horiana is one of the most serious diseases of chrysanthemum (Chrysanthemum × morifolium). In this study, we report the DNA markers associated with resistance against P. horiana via a simple approach using the genome of a wild diploid relative, Chrysanthemum seticuspe. First, we identified the important region of the genome in the resistant cultivar "Ariesu" via a genome-wide association study. Simplex single nucleotide polymorphism (SNP) markers mined from ddRAD-Seq were used in a biparental population originating from crosses between resistant "Ariesu" and susceptible "Yellow Queen". The C. seticuspe genome was used as a reference. For the fine mapping of P. horiana resistance locus 2 (Phr2), a comparative whole genome sequencing study was conducted. Although the genome sequences of chrysanthemum cultivars assembled via the short-read approach were fragmented, reliable genome alignments were reconstructed by mapping onto the chromosome level of the C. seticuspe pseudomolecule. Base variants were then identified by comparing the assembled genome sequences of resistant "Ariesu" and susceptible "Yellow Queen". Consequently, SNP markers that were closer to Phr2 compared with ddRAD-Seq markers were obtained. These SNP markers co-segregated with resistance in F1 progenies originating from resistant "Ariesu" and showed robust transferability for detecting Phr2-conferring resistance among chrysanthemum genetic resources. The wild C. seticuspe pseudomolecule, a de facto monoploid genome used for ddRAD-Seq analysis and assembled genome sequence comparison, demonstrated this method's utility as a model for developing DNA markers in hexaploid chrysanthemum cultivars.

3.
Commun Biol ; 4(1): 1167, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620992

ABSTRACT

Chrysanthemums are one of the most industrially important cut flowers worldwide. However, their segmental allopolyploidy and self-incompatibility have prevented the application of genetic analysis and modern breeding strategies. We thus developed a model strain, Gojo-0 (Chrysanthemum seticuspe), which is a diploid and self-compatible pure line. Here, we present the 3.05 Gb chromosome-level reference genome sequence, which covered 97% of the C. seticuspe genome. The genome contained more than 80% interspersed repeats, of which retrotransposons accounted for 72%. We identified recent segmental duplication and retrotransposon expansion in C. seticuspe, contributing to arelatively large genome size. Furthermore, we identified a retrotransposon family, SbdRT, which was enriched in gene-dense genome regions and had experienced a very recent transposition burst. We also demonstrated that the chromosome-level genome sequence facilitates positional cloning in C. seticuspe. The genome sequence obtained here can greatly contribute as a reference for chrysanthemum in front-line breeding including genome editing.


Subject(s)
Chromosomes, Plant , Chrysanthemum/genetics , Genome, Plant , Polyploidy
4.
Breed Sci ; 71(2): 261-267, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34377074

ABSTRACT

White rust caused by Puccinia horiana Henn. adversely affects chrysanthemum (Chrysanthemum morifolium Ramat.) production. The breeding of resistant varieties is effective in controlling the disease. Here we aimed to develop DNA markers for the strong resistance to P. horiana. We conducted a linkage analysis based on the genome-wide association study (GWAS) method. We employed a biparental population for the GWAS, wherein the single nucleotide polymorphism (SNP) allele frequency could be predicted. The population was derived from crosses between a strong resistant "Southern Pegasus" and a susceptible line. The GWAS used simplex and double-simplex SNP markers selected out of SNP candidates mined from ddRAD-Seq data of an F1 biparental population. These F1 individuals segregated in a 1:1 ratio of resistant to susceptible. Twenty-one simplex SNPs were significantly associated with P. horiana resistance in "Southern Pegasus" and generated one linkage group. These results show the presence of a single resistance gene in "Southern Pegasus". We identified the nearest SNP marker located 2.2 cM from P. horiana resistance locus and demonstrated this SNP marker-resistance link using an independent population. This is the first report of an effective DNA marker linked to a gene for P. horiana resistance in chrysanthemum.

5.
Sci Rep ; 9(1): 13947, 2019 09 26.
Article in English | MEDLINE | ID: mdl-31558738

ABSTRACT

The use of DNA markers has revolutionized selection in crop breeding by linkage mapping and QTL analysis, but major problems still remain for polyploid species where marker-assisted selection lags behind the situation in diploids because of its high genome complexity. To overcome the complex genetic mode in the polyploids, we investigated the development of a strategy of genome-wide association study (GWAS) using single-dose SNPs, which simplify the segregation patterns associated polyploids, with respect to the development of DNA markers. In addition, we employed biparental populations for the GWAS, wherein the SNP allele frequency could be predicted. The research investigated whether the method could be used to effectively develop DNA markers for petal color in autohexaploid chrysanthemum (Chrysanthemum morifolium; 2n = 6x = 54). The causal gene for this trait is already-known CmCCD4a encoding a dioxygenase which cleaves carotenoids in petals. We selected 9,219 single-dose SNPs, out of total 52,489 SNPs identified by dd-RAD-Seq, showing simplex (1 × 0) and double-simplex (1 × 1) inheritance pattern according to alternative allele frequency with respect to the SNP loci in the F1 population. GWAS, using these single-dose SNPs, discovered highly reproducible SNP markers tightly linked to the causal genes. This is the first report of a straightforward GWAS-based marker developing system for use in autohexaploid species.


Subject(s)
Chrysanthemum/genetics , Flowers/genetics , Polymorphism, Single Nucleotide , Polyploidy , Carotenoids/metabolism , Flowers/metabolism , Genome, Plant , Genome-Wide Association Study/methods , Pigmentation/genetics
6.
Plant Sci ; 287: 110174, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31481216

ABSTRACT

Asteraceae is the largest family of angiosperms, comprising approximately 24,000 species. Molecular genetic studies of Asteraceae are essential for understanding plant diversity. Chrysanthemum morifolium is the most industrially important ornamental species in Asteraceae. Most cultivars of C. morifolium are autohexaploid and self-incompatible. These properties are major obstacles to the genetic analysis and modern breeding of C. morifolium. Furthermore, high genome heterogeneity complicates molecular biological analyses. In this study, we developed a model strain in the genus Chrysanthemum. C. seticuspe is a diploid species with a similar flowering property and morphology to C. morifolium and can be subjected to Agrobacterium-mediated transformation. We isolated a natural self-compatible mutant of C. seticuspe and established a pure line through repeated selfing and selection. The resultant strain, named Gojo-0, was favorable for genetic analyses, including isolation of natural and induced mutants, and facilitated molecular biological analysis, including whole genome sequencing, owing to the simplicity and homogeneity of its genome. Interspecific hybridization with Chrysanthemum species was possible, enabling molecular genetic analysis of natural interspecific variations. The accumulation of research results and resources using Gojo-0 as a platform is expected to promote molecular genetic studies on the genus Chrysanthemum and the genetic improvement of chrysanthemum cultivars.


Subject(s)
Chrysanthemum/genetics , Chrysanthemum/ultrastructure , DNA, Plant/genetics , Diploidy , Flowers/ultrastructure , Hybridization, Genetic , Microscopy, Electron, Scanning , Models, Biological , Mutation , Phylogeny , Plant Breeding/methods , Pollination , Self-Fertilization
7.
Plant Sci ; 283: 247-255, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31128695

ABSTRACT

Chrysanthemums require continuous short-days (SD) for anthesis. FTL3 (FLOWERING LOCUS T-like 3), a floral promoter expressed in chrysanthemum leaf, forms a complex with its interacting partner FDL1 to induce floral meristem identity gene AFL1. We explored the FTL3 induction mechanism during SD repeats in Chrysanthemum seticuspe. CsFTL3 expression was not immediately induced by a shift from long-day (LD) to SD, but gradually increased until the capitulum development stage under repeated SDs. Overexpression of CsFTL3 transgene increased endogenous leaf CsFTL3 induction under SD but not LD. Overexpression of CsFDL1 promoted anthesis and increased CsAFL1 and CsFTL3 expression under SD. Loss-of-function of CsFDL1 by RNAi resulted in delayed anthesis and downregulation of leaf CsAFL1 and CsFTL3, indicating the necessity of CsFDL1 for CsFTL3 induction. Overexpression of an antagonistic protein of CsFTL3 or CsFDL1 inhibited leaf CsFTL3 induction. CsFTL3 expression was positively regulated during SDs by a feedback mechanism involving the CsFTL3-CsFDL1 complex. Furthermore, flowering was accomplished by feedback with high levels of CsFTL3 induction under repeated SDs.


Subject(s)
Chrysanthemum/growth & development , Flowers/growth & development , Plant Proteins/physiology , Chrysanthemum/metabolism , Chrysanthemum/physiology , Feedback, Physiological , Flowers/metabolism , Flowers/physiology , Gene Knockdown Techniques , Photoperiod , Plant Leaves/metabolism , Plant Leaves/physiology , Promoter Regions, Genetic/physiology , Transcriptome
8.
DNA Res ; 26(3): 195-203, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30689773

ABSTRACT

Cultivated chrysanthemum (Chrysanthemum morifolium Ramat.) is one of the most economically important ornamental crops grown worldwide. It has a complex hexaploid genome (2n = 6x = 54) and large genome size. The diploid Chrysanthemum seticuspe is often used as a model of cultivated chrysanthemum, since the two species are closely related. To expand our knowledge of the cultivated chrysanthemum, we here performed de novo whole-genome assembly in C. seticuspe using the Illumina sequencing platform. XMRS10, a C. seticuspe accession developed by five generations of self-crossing from a self-compatible strain, AEV2, was used for genome sequencing. The 2.72 Gb of assembled sequences (CSE_r1.0), consisting of 354,212 scaffolds, covered 89.0% of the 3.06 Gb C. seticuspe genome estimated by k-mer analysis. The N50 length of scaffolds was 44,741 bp. For protein-encoding genes, 71,057 annotated genes were deduced (CSE_r1.1_cds). Next, based on the assembled genome sequences, we performed linkage map construction, gene discovery and comparative analyses for C. seticuspe and cultivated chrysanthemum. The generated C. seticuspe linkage map revealed skewed regions in segregation on the AEV2 genome. In gene discovery analysis, candidate flowering-related genes were newly found in CSE_r1.1_cds. Moreover, single nucleotide polymorphism identification and annotation on the C. × morifolium genome showed that the C. seticuspe genome was applicable to genetic analysis in cultivated chrysanthemums. The genome sequences assembled herein are expected to contribute to future chrysanthemum studies. In addition, our approach demonstrated the usefulness of short-read genome assembly and the importance of choosing an appropriate next genome sequencing technology based on the purpose of the post-genome analysis.


Subject(s)
Chrysanthemum/genetics , Genetic Linkage , Genome, Plant , Polymorphism, Genetic , Whole Genome Sequencing , Chromosome Mapping , Molecular Sequence Annotation , Phylogeny
9.
BMC Plant Biol ; 17(1): 202, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-29141585

ABSTRACT

BACKGROUND: Chlorophylls (Chls) are magnesium-containing tetrapyrrole macromolecules responsible for the green color in plants. The Chl metabolic pathway has been intensively studied and nearly all the enzymes involved in the pathway have been identified and characterized. Synthesis and activity of these enzymes are tightly regulated in tissue- and developmental stage-specific manners. Leaves contain substantial amounts of Chls because Chls are indispensable for photosynthesis. In contrast, petals generally contain only trace amounts of Chls, which if present would mask the bright petal color. Limited information is available about the mechanisms that control such tissue-specific accumulation of Chls. RESULTS: To identify the regulatory steps that control Chl accumulation, we compared gene expression in petals and leaves of chrysanthemum cultivars with different Chl levels. Microarray and quantitative real-time PCR analyses showed that the expression levels of Chl biosynthesis genes encoding glutamyl-tRNA reductase, Mg-protoporphyrin IX chelatase, Mg-protoporphyrin IX monomethylester cyclase, and protochlorophyllide oxidoreductase were well associated with Chl content: their expression levels were lower in white petals than in green petals, and were highest in leaves. Among Chl catabolic genes, expression of STAY-GREEN, encoding Mg-dechelatase, which is a key enzyme controlling Chl degradation, was considerably higher in white and green petals than in leaves. We searched for transcription factor genes whose expression was well related to Chl level in petals and leaves and found three such genes encoding MYB113, CONSTANS-like 16, and DREB and EAR motif protein. CONCLUSIONS: From our transcriptome analysis, we assume that a low rate of Chl biosynthesis and a high rate of Chl degradation lead to the absence of Chls in white chrysanthemum petals. We identified several candidate transcription factors that might affect Chl accumulation in chrysanthemum petals. Functional analysis of these transcription factors will provide a basis for future molecular studies of tissue-specific Chl accumulation.


Subject(s)
Chlorophyll/metabolism , Chrysanthemum/metabolism , Flowers/metabolism , Plant Leaves/metabolism , Chlorophyll/analysis , Chrysanthemum/genetics , Flowers/chemistry , Gene Expression Profiling , Genes, Plant , Metabolic Networks and Pathways , Microscopy, Electron, Transmission , Oligonucleotide Array Sequence Analysis , Plant Leaves/chemistry , Real-Time Polymerase Chain Reaction
10.
Proc Natl Acad Sci U S A ; 110(42): 17137-42, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24082137

ABSTRACT

Photoperiodic floral induction has had a significant impact on the agricultural and horticultural industries. Changes in day length are perceived in leaves, which synthesize systemic flowering inducers (florigens) and inhibitors (antiflorigens) that determine floral initiation at the shoot apex. Recently, FLOWERING LOCUS T (FT) was found to be a florigen; however, the identity of the corresponding antiflorigen remains to be elucidated. Here, we report the identification of an antiflorigen gene, Anti-florigenic FT/TFL1 family protein (AFT), from a wild chrysanthemum (Chrysanthemum seticuspe) whose expression is mainly induced in leaves under noninductive conditions. Gain- and loss-of-function analyses demonstrated that CsAFT acts systemically to inhibit flowering and plays a predominant role in the obligate photoperiodic response. A transient gene expression assay indicated that CsAFT inhibits flowering by directly antagonizing the flower-inductive activity of CsFTL3, a C. seticuspe ortholog of FT, through interaction with CsFDL1, a basic leucine zipper (bZIP) transcription factor FD homolog of Arabidopsis. Induction of CsAFT was triggered by the coincidence of phytochrome signals with the photosensitive phase set by the dusk signal; flowering occurred only when night length exceeded the photosensitive phase for CsAFT induction. Thus, the gated antiflorigen production system, a phytochrome-mediated response to light, determines obligate photoperiodic flowering response in chrysanthemums, which enables their year-round commercial production by artificial lighting.


Subject(s)
Chrysanthemum/metabolism , Flowers/metabolism , Gene Expression Regulation, Plant/physiology , Photoperiod , Plant Proteins/biosynthesis , Trans-Activators/biosynthesis , Amino Acid Sequence , Chrysanthemum/genetics , Flowers/genetics , Genetic Loci/physiology , Molecular Sequence Data , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Sequence Homology, Amino Acid , Trans-Activators/genetics
11.
J Exp Bot ; 64(4): 909-20, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23314814

ABSTRACT

Flowering time of the short-day plant Chrysanthemum morifolium is largely dependent upon daylength, but it is also distinctly influenced by other environmental factors. Flowering is delayed by summer heat. Here, the underlying basis for this phenomenon was investigated. Heat-induced flowering retardation occurred similarly in C. morifolium and C. seticuspe, a wild-type diploid chrysanthemum. In both plants, this flowering retardation occurred mainly because of inhibition of capitulum development. Concurrently, expression of flowering-related genes in the shoot tip was delayed under high temperature conditions. In chrysanthemums, FLOWERING LOCUS T-like 3 (FTL3) has been identified as a floral inducer produced in the leaves after short-day stimuli and transported to the shoot tip. In C. seticuspe, heat-induced flowering retardation was accompanied by a reduction in FTL3 expression in the leaves. Two C. morifolium cultivars with flowering times that are differently affected by growth temperature were also examined. High temperature-induced FTL3 repression was observed in the leaves of both cultivars, although the degree of repression was greater in the heat-sensitive cultivar than in the heat-tolerant cultivar. When a scion of the heat-sensitive cultivar was grafted onto the stock of the heat-tolerant cultivar, flowering in the shoot tip was less sensitive to heat. Conversely, a scion of the heat-tolerant cultivar grafted onto the heat-sensitive cultivar showed increased heat sensitivity. Thus, several lines of evidence suggest that the reduction of FTL3 signalling from the leaves to the shoot tip at high temperatures is involved in flowering retardation in chrysanthemums.


Subject(s)
Chrysanthemum/genetics , Flowers/growth & development , Gene Expression Regulation, Plant , Genes, Plant , Hot Temperature , Chrysanthemum/growth & development , Flowers/genetics , Photoperiod , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/metabolism , Protein Transport , RNA, Plant/genetics , RNA, Plant/metabolism , Signal Transduction , Species Specificity , Time Factors
12.
J Plant Physiol ; 169(18): 1789-96, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-22840324

ABSTRACT

Chrysanthemum (Chrysanthemum morifolium) is a short-day plant, which flowers when the night length is longer than a critical minimum. Flowering is effectively inhibited when the required long-night phase is interrupted by a short period of exposure to red light (night break; NB). The reversal of this inhibition by subsequent exposure to far-red (FR) light indicates the involvement of phytochromes in the flowering response. Here, we elucidated the role of light quality in photoperiodic regulation of chrysanthemum flowering, by applying a range of different conditions. Flowering was consistently observed under short days with white light (W-SD), SD with monochromatic red light (R-SD), or SD with monochromatic blue light (B-SD). For W-SD, NB with monochromatic red light (NB-R) was most effective in inhibiting flowering, while NB with monochromatic blue light (NB-B) and NB with far-red light (NB-FR) caused little inhibition. In contrast, for B-SD, flowering was strongly inhibited by NB-B and NB-FR. However, when B-SD was supplemented with monochromatic red light (B+R-SD), no inhibition by NB-B and NB-FR was observed. Furthermore, the inhibitory effect of NB-B following B-SD was partially reversed by subsequent exposure to a FR light pulse. The conditions B-SD/NB-B (no flowering) and B+R-SD/NB-B (flowering) similarly affected the expression of circadian clock-related genes. However, only the former combination suppressed expression of the chrysanthemum orthologue of FLOWERING LOCUS T (CmFTL3). Our results suggest the involvement of at least 2 distinct phytochrome responses in the flowering response of chrysanthemum. Furthermore, it appears that the light quality supplied during the daily photoperiod affects the light quality required for effective NB.


Subject(s)
Chrysanthemum/radiation effects , Flowers/radiation effects , Light , Photoperiod , Phytochrome/metabolism , Plant Leaves/radiation effects , Chrysanthemum/genetics , Chrysanthemum/physiology , Circadian Clocks , DNA, Complementary , Darkness , Flowers/genetics , Flowers/physiology , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Real-Time Polymerase Chain Reaction , Signal Transduction
13.
J Exp Bot ; 63(3): 1461-77, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22140240

ABSTRACT

Chrysanthemum is a typical short-day (SD) plant that responds to shortening daylength during the transition from the vegetative to the reproductive phase. FLOWERING LOCUS T (FT)/Heading date 3a (Hd3a) plays a pivotal role in the induction of phase transition and is proposed to encode a florigen. Three FT-like genes were isolated from Chrysanthemum seticuspe (Maxim.) Hand.-Mazz. f. boreale (Makino) H. Ohashi & Yonek, a wild diploid chrysanthemum: CsFTL1, CsFTL2, and CsFTL3. The organ-specific expression patterns of the three genes were similar: they were all expressed mainly in the leaves. However, their response to daylength differed in that under SD (floral-inductive) conditions, the expression of CsFTL1 and CsFTL2 was down-regulated, whereas that of CsFTL3 was up-regulated. CsFTL3 had the potential to induce early flowering since its overexpression in chrysanthemum could induce flowering under non-inductive conditions. CsFTL3-dependent graft-transmissible signals partially substituted for SD stimuli in chrysanthemum. The CsFTL3 expression levels in the two C. seticuspe accessions that differed in their critical daylengths for flowering closely coincided with the flowering response. The CsFTL3 expression levels in the leaves were higher under floral-inductive photoperiods than under non-inductive conditions in both the accessions, with the induction of floral integrator and/or floral meristem identity genes occurring in the shoot apexes. Taken together, these results indicate that the gene product of CsFTL3 is a key regulator of photoperiodic flowering in chrysanthemums.


Subject(s)
Chrysanthemum/metabolism , Chrysanthemum/physiology , Flowers/metabolism , Flowers/physiology , Photoperiod , Plant Proteins/metabolism , Chrysanthemum/genetics , Flowers/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Plant Proteins/genetics
14.
J Exp Bot ; 59(15): 4075-82, 2008.
Article in English | MEDLINE | ID: mdl-18952907

ABSTRACT

Temperature plays a significant role in the annual cycling between growth and dormancy of the herbaceous perennial chrysanthemum (Chrysanthemum morifolium Ramat.). After exposure to high summer temperatures, cool temperature triggers dormancy. The cessation of flowering and rosette formation by the cessation of elongation are characteristic of dormant plants, and can be stimulated by exogenous ethylene. Thus, the ethylene response pathway may be involved in temperature-induced dormancy of chrysanthemum. Transgenic chrysanthemums expressing a mutated ethylene receptor gene were used to assess this involvement. The transgenic lines showed reduced ethylene sensitivity: ethylene causes leaf yellowing in wild-type chrysanthemums, but leaves remained green in the transgenic lines. Extension growth and flowering of wild-type and transgenic lines varied between temperatures: at 20 degrees C, the transgenic lines showed the same stem elongation and flowering as the wild type; at cooler temperatures, the wild type formed rosettes with an inability to flower and entered dormancy, but some transgenic lines continued to elongate and flower. This supports the involvement of the ethylene response pathway in the temperature-induced dormancy of chrysanthemum. At the highest dosage of ethephon, an ethylene-releasing agent, wild-type plants formed rosettes with an inability to flower and became dormant, but one transgenic line did not. This confirms that dormancy is induced via the ethylene response pathway.


Subject(s)
Chrysanthemum/physiology , Ethylenes/metabolism , Gene Expression Regulation, Plant , Chrysanthemum/genetics , Flowers/genetics , Flowers/physiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology , Temperature
15.
Plant Physiol ; 142(3): 1193-201, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16980560

ABSTRACT

The white petals of chrysanthemum (Chrysanthemum morifolium Ramat.) are believed to contain a factor that inhibits the accumulation of carotenoids. To find this factor, we performed polymerase chain reaction-Select subtraction screening and obtained a clone expressed differentially in white and yellow petals. The deduced amino acid sequence of the protein (designated CmCCD4a) encoded by the clone was highly homologous to the sequence of carotenoid cleavage dioxygenase. All the white-flowered chrysanthemum cultivars tested showed high levels of CmCCD4a transcript in their petals, whereas most of the yellow-flowered cultivars showed extremely low levels. Expression of CmCCD4a was strictly limited to flower petals and was not detected in other organs, such as the root, stem, or leaf. White petals turned yellow after the RNAi construct of CmCCD4a was introduced. These results indicate that in white petals of chrysanthemums, carotenoids are synthesized but are subsequently degraded into colorless compounds, which results in the white color.


Subject(s)
Chrysanthemum/enzymology , Dioxygenases/genetics , Dioxygenases/metabolism , Flowers/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Chrysanthemum/genetics , Color , Flowers/genetics , Gene Expression Regulation, Plant/physiology , Molecular Sequence Data , Phylogeny , Plant Proteins/genetics , RNA Interference
16.
Biosci Biotechnol Biochem ; 69(11): 2122-8, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16306694

ABSTRACT

Nineteen carotenoids were identified in extracts of petals of orange- and yellow-flowered cultivars of calendula (Calendula officinalis L.). Ten carotenoids were unique to orange-flowered cultivars. The UV-vis absorption maxima of these ten carotenoids were at longer wavelengths than that of flavoxanthin, the main carotenoid of calendula petals, and it is clear that these carotenoids are responsible for the orange color of the petals. Six carotenoids had a cis structure at C-5 (C-5'), and it is conceivable that these (5Z)-carotenoids are enzymatically isomerized at C-5 in a pathway that diverges from the main carotenoid biosynthesis pathway. Among them, (5Z,9Z)-lycopene (1), (5Z,9Z,5'Z,9'Z)-lycopene (3), (5'Z)-gamma-carotene (4), and (5'Z,9'Z)-rubixanthin (5) has never before been identified. Additionally, (5Z,9Z,5'Z)-lycopene (2) has been reported only as a synthesized compound.


Subject(s)
Calendula/chemistry , Carotenoids/analysis , Flowers/chemistry , Carotenoids/chemistry , Color , Molecular Structure , Plant Extracts/analysis , Spectrophotometry, Ultraviolet , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL