Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Atten Percept Psychophys ; 85(3): 845-862, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36460926

ABSTRACT

Discriminating relevant from irrelevant information in a busy visual scene is supported by statistical regularities in the environment. However, it is unclear to what extent immediate stimulus repetitions and higher order expectations (whether a repetition is statistically probable or not) are supported by the same neural mechanisms. Moreover, it is also unclear whether target and distractor-related processing are mediated by the same or different underlying neural mechanisms. Using a speeded target discrimination task, the present study implicitly cued subjects to the location of the target or the distractor via manipulations in the underlying stimulus predictability. In separate studies, we collected EEG and MEG alongside behavioural data. Results showed that reaction times were reduced with increased expectations for both types of stimuli and that these effects were driven by expected repetitions in both cases. Despite the similar behavioural pattern across target and distractors, neurophysiological measures distinguished the two stimuli. Specifically, the amplitude of the P1 was modulated by stimulus relevance, being reduced for repeated distractors and increased for repeated targets. The P1 was not, however, modulated by higher order stimulus expectations. These expectations were instead reflected in modulations in ERP amplitude and theta power in frontocentral electrodes. Finally, we observed that a single repetition of a distractor was sufficient to reduce decodability of stimulus spatial location and was also accompanied by diminished representation of stimulus features. Our results highlight the unique mechanisms involved in distractor expectation and suppression and underline the importance of studying these processes distinctly from target-related attentional control.


Subject(s)
Electroencephalography , Motivation , Humans , Reaction Time/physiology , Attention/physiology , Cues
2.
Ultramicroscopy ; 107(4-5): 401-13, 2007.
Article in English | MEDLINE | ID: mdl-17140733

ABSTRACT

The electron imaging performance of Medipix2 is described. Medipix2 is a hybrid pixel detector composed of two layers. It has a sensor layer and a layer of readout electronics, in which each 55 microm x 55 microm pixel has upper and lower energy discrimination and MHz rate counting. The sensor layer consists of a 300 microm slab of pixellated monolithic silicon and this is bonded to the readout chip. Experimental measurement of the detective quantum efficiency, DQE(0) at 120 keV shows that it can reach approximately 85% independent of electron exposure, since the detector has zero noise, and the DQE(Nyquist) can reach approximately 35% of that expected for a perfect detector (4/pi(2)). Experimental measurement of the modulation transfer function (MTF) at Nyquist resolution for 120 keV electrons using a 60 keV lower energy threshold, yields a value that is 50% of that expected for a perfect detector (2/pi). Finally, Monte Carlo simulations of electron tracks and energy deposited in adjacent pixels have been performed and used to calculate expected values for the MTF and DQE as a function of the threshold energy. The good agreement between theory and experiment allows suggestions for further improvements to be made with confidence. The present detector is already very useful for experiments that require a high DQE at very low doses.


Subject(s)
Cryoelectron Microscopy/methods , Radiographic Image Interpretation, Computer-Assisted/methods , Computer Simulation , Cryoelectron Microscopy/instrumentation , Monte Carlo Method , Radiographic Image Interpretation, Computer-Assisted/instrumentation , Software
SELECTION OF CITATIONS
SEARCH DETAIL