Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 180: 578-589, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-33727188

ABSTRACT

G-quadruplex DNA (G4DNA) structure, which widely exists in the chromosomal telomeric regions and oncogenic promoter regions, plays a pivotal role in extending telomeric DNA with the help of telomerase in human cells. Bloom (BLM) helicase, a crucial member of the family of genome surveillance proteins, plays an essential role in DNA metabolic and repair pathways, including DNA replication, repair, transcription, recombination during chromosome segregation, and assuring telomere stability. The unwinding of G4DNA requires the participation of DNA helicase, which is crucial for maintaining chromosomal stability in cancer cells. Using fluorescence polarization and the electrophoretic mobility shift assay (EMSA), this study aimed to investigate the DNA-binding and unwinding properties of BLM helicase, cloned and purified from prostate cancer cells, toward G4DNA. The results revealed that BLM helicase derived from prostate cancer cells could bind and unwind G4DNA. The molecular affinity of bond between G4DNA and the helicase was dependent on the single-stranded DNA (ssDNA) terminals in G4DNA; the helicase was effectively bound to the G4DNA when the helicase monomer sufficiently covered approximately 10 nucleotides at the 3' or 5' ssDNA tail of G4DNA. For the unwinding of G4DNA, there was an apparent requirement of a 3' ssDNA tail and ATP; a G4DNA with only a 3' ssDNA tail was identified to be the most suitable substrate to be unwound by BLM helicase and required 3' ssDNA tails of at least 10 nt in length for efficient unwinding. Besides, BLM helicase was loosely bound and partly unwound the blunt-ended G4DNA. Although further mechanistic studies are warranted, the experimental results presented in this study are beneficial to further our understanding of the functional implication of BLM helicase in prostate cancer cells.


Subject(s)
DNA/chemistry , G-Quadruplexes , Prostatic Neoplasms/metabolism , RecQ Helicases/metabolism , Telomere/metabolism , DNA/genetics , DNA/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Humans , Kinetics , Male , Models, Molecular , Nucleic Acid Conformation , PC-3 Cells , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Binding , RecQ Helicases/genetics , Substrate Specificity , Telomere/genetics
2.
Onco Targets Ther ; 13: 5495-5514, 2020.
Article in English | MEDLINE | ID: mdl-32606766

ABSTRACT

BACKGROUND: The miR-17-92 cluster, consisting of six mature miRNAs including miR-17, miR-18a, miR-19a, miR-19b, miR-20a, and miR-92a, plays a key role in the tumorigenesis and development of various cancers. The dysregulation of the cluster correlates with the biological mechanism of tumor growth and metastasis in vivo. However, the relationship between miR-17-92 cluster and malignancy of prostate cancer remains unclear, and its regulatory mechanism is worth investigating for controlling the proliferation and invasion of prostate cancer. MATERIALS AND METHODS: The expressions of miR-17-92 cluster members were measured using real-time quantitative RT-PCR. WB and real-time quantitative RT-PCR were used to detect the expression of SERTAD3, p38, p21, p53 protein levels and transcription levels. Cell proliferation and apoptosis were evaluated using cell proliferation assay, EdU and Hoechst assay, colony formation experiment and flow cytometry analyses. Cell migration and invasion were determined via transwell assays. The TargetScan, miRDB, starBase databases and luciferase reporter assays were used to confirm the target gene of miR-92a. RESULTS: The relative expression of miR-92a was threefold higher in the metastatic PC-3 cells compared with the non-metastatic LNCaP cells. Down-regulation of miR-92a in PC-3 cells led to the inhibition of cell proliferation, migration, and invasion, while its overexpression in LNCaP cells resulted in the promotion of cell proliferation, migration, and invasion. The role of SERTAD3 in prostate cancer can be alleviated by miR-92a inhibitor. CONCLUSION: SERTAD3 was the direct target gene of miR-92a in prostate cancer cells; inhibition of SERTAD3-dependent miR-92a alleviated the growth, invasion, and migration of prostate cancer cells by regulating the expression of the key genes of the p53 pathway, including p38, p53 and p21. These results suggested that targeting SERTAD3 by the induction of overexpression of miR-92a may be a treatment option in prostate cancer.

3.
Int J Mol Sci ; 18(12)2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29257105

ABSTRACT

The importance of miRNAs in the progression of prostate cancer (PCa) has further been supported by the finding that miRNAs have been identified as potential oncogenes or tumor suppressors in PCa. Indeed, in eukaryotes, miRNAs have been found to regulate and control gene expression by degrading mRNA at the post-transcriptional level. In this study, we investigated the expression of miR-34 family members, miR-34b and miR-34c, in different PCa cell lines, and discussed the molecular mechanism of miR-34b in the invasion and migration of PCa cells in vitro. The difference analyses of the transcriptome between the DU145 and PC3 cell lines demonstrated that both miR-34b and -34c target critical pathways that are involved in metabolism, such as proliferation, and migration, and invasion. The molecular expression of miR-34b/c were lower in PC3 cells. Moreover, over-expression of miR-34b/c in PC3 cells caused profound phenotypic changes, including decreased cell proliferation, migration and invasion. Moreover, the players that regulate expression levels of transforming growth factor-ß (TGF-ß), TGF-ß receptor 1 (TGF-ßR1), and p53 or phosphorylation levels of mothers against decapentaplegic 3 (SMAD3) in the TGF-ß/Smad3 signaling pathway have yet to be elucidated, and will provide novel tools for diagnosis and treatment of metastatic PCa.


Subject(s)
Cell Movement , MicroRNAs/genetics , Prostatic Neoplasms/metabolism , Transforming Growth Factor beta/metabolism , Cell Line, Tumor , Humans , Male , MicroRNAs/metabolism , Neoplasm Metastasis , Prostatic Neoplasms/pathology , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Smad3 Protein/metabolism , Tumor Suppressor Protein p53/metabolism
4.
Int J Mol Med ; 40(6): 1624-1630, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29039606

ABSTRACT

MicroRNAs (miRNAs), a class of short, single­stranded non­coding RNAs, regulate and control gene expression in eukaryotes by degrading mRNA at the post­transcriptional level. Regulation by miRNAs involves a plethora of biological processes, such as cell differentiation, proliferation, metastasis, metabolism, apoptosis, tumorigenesis and others. miRNAs also represent a powerful tool in disease diagnosis and prognosis. The miR­17­92 cluster, one of the most extensively investigated microRNA clusters, comprises six mature miRNA members, including miR­17, miR­18a, miR­19a, miR­19b, miR­20a and miR­92a. Originally identified as being involved in tumorigenesis, it is currently evident that the expression of the miR­17­92 cluster is upregulated in a wide range of tumor cells and cancer types; thus, this cluster has been identified as a potential oncogene. Considering the growing interest in the field of miR­17­92 research, we herein review recent advances in the expression and regulation of this cluster in various cancer cells, discuss the proposed mechanism of action for tumorigenesis and tumor development, and propose clinical and therapeutic applications for miR­17­92 cluster members, such as potential cancer biomarkers.


Subject(s)
Gene Expression Regulation, Neoplastic , MicroRNAs , Neoplasms , Animals , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , Neoplasms/metabolism , RNA, Long Noncoding , Tumor Cells, Cultured
5.
Biochem Res Int ; 2017: 6257240, 2017.
Article in English | MEDLINE | ID: mdl-28713593

ABSTRACT

To get inside the properties of N,N-disubstituted Schiff bases, we synthesized three high-yielding benzaldehyde Schiff bases. We used the reaction between salicylaldehyde and different diamine compounds, including diamine, ethanediamine, and o-phenylenediamine, determining the structure of obtained molecules by nuclear magnetic resonance spectroscopy and electrospray ionization mass spectroscopy. We thus evaluated the microbicidal and antitumor activity of these compounds, showing that salicylaldehyde-hydrazine hydrate Schiff base (compound 1a) significantly inhibited the growth of S. aureus; salicylaldehyde-o-phenylenediamine Schiff base (compound 1c) displayed a strong capability to inhibit the proliferation of leukemia cell lines K562 and HEL. Moreover, we observed that the antibacterial action of 1a might be associated with the regulation of the expression of key virulence genes in S. aureus. Compound 1c resulted in a strong apoptotic activity against leukemia cells, also affecting the cell cycle distribution. Overall, our novel N,N-disubstituted Schiff bases possess unique antibacterial or antitumor activities that exhibit the potent application prospect in prophylactic or therapeutic interventions, providing new insights for developing new antibacterial and anticancer chemical agents.

6.
PLoS One ; 10(9): e0137810, 2015.
Article in English | MEDLINE | ID: mdl-26368803

ABSTRACT

High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1 and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus.


Subject(s)
Arsenic/adverse effects , Brain-Derived Neurotrophic Factor/metabolism , CREB-Binding Protein/metabolism , Memory Disorders/prevention & control , Physical Conditioning, Animal/methods , Animals , Arsenic/pharmacology , Behavior, Animal , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Gene Expression Regulation/drug effects , Male , Memory Disorders/etiology , Memory Disorders/physiopathology , Memory, Long-Term/drug effects , Mice , Swimming/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...