Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.185
Filter
1.
Chem Commun (Camb) ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743417

ABSTRACT

Two anionic tetrahedral cages were self-assembled as the only observable products in weakly basic water via imine condensation. The success of the high-yielding formation of the cages in water relies on (i) multivalency enhancing the stability of the imine bond and affording these cages water compatibility and (ii) a guest template with a complementary size and geometry that provides a hydrophobic driving force by occupying the corresponding cage cavity. When all four precursors, namely two trisaldehydes and two trisamines, were combined in water, narcissistic self-sorting occurred when both guest templates were present. In organic media where the hydrophobic effect is absent, narcissistic self-sorting did not occur in the analogous cage systems, confirming the importance of guest templates.

2.
Diabetes Metab Syndr ; 18(5): 103037, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38744090

ABSTRACT

AIM: To evaluate the potential of the combined individual vascular histopathological lesion and serum 25-hydroxy vitamin D [25(OH)D] level as predictors of outcomes in patients with diabetes and chronic kidney disease. METHODS: A total of 190 patients with type 2 diabetes and kidney disease stages 1-4 were retrospectively included. Kaplan-Meier analysis and the log-rank test were performed to assess renal survival differences. And the time-dependent receiver operating characteristic analyses were used to characterize the predictive accuracy. Hazard ratios for vascular lesion scores and 25(OH)D levels with renal outcomes were estimated using Cox proportional hazards regression models with follow-up time. RESULTS: Over a median follow-up of 23.78 (12.61, 37.14) months, 71 patients (37.4 %) experienced the renal outcomes. Enrolled patients with more severe vascular lesions had worse kidney function, heavier proteinuria, lower serum 25(OH)D levels, and higher prevalence of composite kidney outcomes. Baseline serum 25(OH)D was a significant independent risk factor for vascular lesion scores. The effect of serum 25(OH)D level on kidney prognosis was more pronounced in males and those with more exacerbated vascular lesions (score 2). The severity of vascular lesions and serum 25(OH)D levels were associated with unfavorable kidney outcomes. Accordingly, further time-dependent receiver operating characteristic curves confirmed that combined 25(OH)D level and vascular lesion score had a stable and reliable performance in renal outcomes prediction at short and long-term follow-up times. CONCLUSIONS: 25(OH)D level and vascular lesion scores in kidney histopathology could serve as a useful risk-stratification tool for predicting renal progression in patients with type 2 diabetes.

3.
Sci Rep ; 14(1): 11632, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773257

ABSTRACT

In recent years, the utility of polygenic risk scores (PRS) in forecasting disease susceptibility from genome-wide association studies (GWAS) results has been widely recognised. Yet, these models face limitations due to overfitting and the potential overestimation of effect sizes in correlated variants. To surmount these obstacles, we devised the Stacked Neural Network Polygenic Risk Score (SNPRS). This novel approach synthesises outputs from multiple neural network models, each calibrated using genetic variants chosen based on diverse p-value thresholds. By doing so, SNPRS captures a broader array of genetic variants, enabling a more nuanced interpretation of the combined effects of these variants. We assessed the efficacy of SNPRS using the UK Biobank data, focusing on the genetic risks associated with breast and prostate cancers, as well as quantitative traits like height and BMI. We also extended our analysis to the Korea Genome and Epidemiology Study (KoGES) dataset. Impressively, our results indicate that SNPRS surpasses traditional PRS models and an isolated deep neural network in terms of accuracy, highlighting its promise in refining the efficacy and relevance of PRS in genetic studies.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Multifactorial Inheritance , Neural Networks, Computer , Polymorphism, Single Nucleotide , Humans , Multifactorial Inheritance/genetics , Genome-Wide Association Study/methods , Female , Male , Prostatic Neoplasms/genetics , Breast Neoplasms/genetics , Risk Factors , Genetic Risk Score
4.
ChemSusChem ; : e202400735, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771427

ABSTRACT

Large-scale hydrogen production through water splitting represents an optimal approach for storing sustainable but intermittent energy sources. However, water oxidation, a complex and sluggish reaction, poses a significant bottleneck for water splitting efficiency. The impact of outer chemical environments on the reaction kinetics of water oxidation catalytic centers remains unexplored. Herein, chemical environment impacts were integrated by featuring methylpyridinium cation group (Py+) around the classic Ru(bpy)(tpy) (bpy = 2,2'-bipyridine, tpy = 2,2':6',2''-terpyridine) water oxidation catalyst on the electrode surface via electrochemical co-polymerization. The presence of Py+ groups could significantly enhance the turnover frequencies of Ru(bpy)(tpy), surpassing the performance of typical proton acceptors such as pyridine and benzoic acid anchored around the catalyst. Mechanistic investigations reveal that the flexible internal proton acceptor anions induced by Py+ around Ru(bpy)(tpy) are more effective than conventionally anchored proton acceptors, which promoted the rate-determining proton transfer process and enhanced the rate of water nucleophilic attack during O-O bond formation. This study may provide a novel perspective on achieving efficient water oxidation systems by integrating cations into the outer chemical environments of catalytic centers.

5.
ACS Nano ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38753820

ABSTRACT

Advanced in vivo imaging techniques have facilitated the comprehensive visual exploration of animal biological processes, leading to groundbreaking discoveries such as the glymphatic system. However, current limitations of macroscopic imaging techniques impede the precise investigation of physiological parameters regulating this specialized lymphatic transport system. While NIR-II fluorescence imaging has demonstrated advantages in peripheral lymphatic imaging, there are few reports regarding its utilization in the glymphatic system. To address this, a noninvasive transcranial macroscopic NIR-II fluorescence imaging model is developed using a cyanine dye-protein coupled nanoprobe. NIR-II imaging with high temporal and spatial resolution reveals that hypothermia can increase the glymphatic influx by reducing the flow rate of cerebrospinal fluid. In addition, respiratory rate, respiratory amplitude, and heart rate all play a role in regulating the glymphatic influx. Thus, targeting the glymphatic influx may alter the trajectory of immune inflammation following brain injury, providing therapeutic prospects for treating brain injury with mild hypothermia.

6.
Adv Sci (Weinh) ; : e2402756, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696647

ABSTRACT

Colloidal quantum dots (CQDs) are promising optoelectronic materials for solution-processed thin film optoelectronic devices. However, the large surface area with abundant surface defects of CQDs and trap-assisted non-radiative recombination losses at the interface between CQDs and charge-transport layer limit their optoelectronic performance. To address this issue, an interface heterojunction strategy is proposed to protect the CQDs interface by incorporating a thin layer of polyethyleneimine (PEIE) to suppress trap-assisted non-radiative recombination losses. This thin layer not only acts as a protective barrier but also modulates carrier recombination and extraction dynamics by forming heterojunctions at the buried interface between CQDs and charge-transport layer, thereby enhancing the interface charge extraction efficiency. This enhancement is demonstrated by the shortened lifetime of carrier extraction from 0.72 to 0.46 ps. As a result, the resultant PbS CQD solar cells achieve a power-conversion-efficiency (PCE) of 13.4% compared to 12.2% without the heterojunction.

7.
Biomed Pharmacother ; 175: 116703, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38713948

ABSTRACT

The distinctive role of Yes-associated protein (YAP) in the nervous system has attracted widespread attention. This comprehensive review strategically uses the retina as a vantage point, embarking on an extensive exploration of YAP's multifaceted impact from the retina to the brain in development and pathology. Initially, we explore the crucial roles of YAP in embryonic and cerebral development. Our focus then shifts to retinal development, examining in detail YAP's regulatory influence on the development of retinal pigment epithelium (RPE) and retinal progenitor cells (RPCs), and its significant effects on the hierarchical structure and functionality of the retina. We also investigate the essential contributions of YAP in maintaining retinal homeostasis, highlighting its precise regulation of retinal cell proliferation and survival. In terms of retinal-related diseases, we explore the epigenetic connections and pathophysiological regulation of YAP in diabetic retinopathy (DR), glaucoma, and proliferative vitreoretinopathy (PVR). Lastly, we broaden our exploration from the retina to the brain, emphasizing the research paradigm of "retina: a window to the brain." Special focus is given to the emerging studies on YAP in brain disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), underlining its potential therapeutic value in neurodegenerative disorders and neuroinflammation.

8.
J Med Chem ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718180

ABSTRACT

Faced with increasingly serious fungal infections and drug resistance issues, three different series of novel dual-target (programmed death ligand 1/14 α-demethylase) compounds were constructed through the fragment combination pathway in the study. Their chemical structures were synthesized, characterized, and evaluated. Among them, preferred compounds 10c-1, 17b-1, and 18b-2 could efficiently exert their antifungal and antidrug-resistant fungal ability through blocking ergosterol biosynthesis, inducing the upregulation of reactive oxygen species level, and triggering apoptosis. Especially, compound 18b-2 exhibited the synergistic function of fungal inhibition and immune activation. Moreover, the covalent organic framework carrier was also generated based on the acidic microenvironment of fungal infection to improve the bioavailability and targeting of preferred compounds; this finally accelerated the body's recovery rate.

10.
BMC Psychiatry ; 24(1): 370, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755597

ABSTRACT

BACKGROUND: Borderline personality traits play a significant role in nonsuicidal self-injury (NSSI), particularly in depressed youths. NSSI is also highly correlated with negative life events. This research aimed to explore the connections between negative life events, borderline personality traits, and NSSI. METHODS: The study included 338 depressed youth aged 13 to 25 years. Self-reported measures and clinical interviews were utilized to evaluate the depressive symptoms, borderline personality traits, negative life events, and NSSI behaviours of these participants. Identifying variables linked to NSSI was the aim of our analysis, and we also conducted a mediation analysis to look into the influence of borderline traits on the connection between negative life events and NSSI. RESULTS: Of the 338 depressed youth, approximately 59.47% (201/338) displayed NSSI, which was associated with greater clinical severity. Borderline traits had an independent influence on NSSI and it partially explained the connection between negative life events and NSSI, even when accounting for depression symptoms. Depressed youth who were more vulnerable to NSSI behaviours often experienced negative life events such as interpersonal relationships, academic pressure, being punished, and loss. CONCLUSIONS: Our research suggests that depressed youth who experience more negative life events are more likely to experience NSSI, and negative life events indirectly influence nonsuicidal self-injury through borderline personality traits. Implementing interventions focused on mitigating borderline symptoms could be a promising therapeutic approach for addressing NSSI in young people.


Subject(s)
Borderline Personality Disorder , Self-Injurious Behavior , Humans , Self-Injurious Behavior/psychology , Adolescent , Borderline Personality Disorder/psychology , Female , Male , Young Adult , Adult , Depression/psychology , Life Change Events
11.
Acta Pharmacol Sin ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750074

ABSTRACT

Hypoxia-ischemia (HI) is one of the main causes of neonatal brain injury. Mitophagy has been implicated in the degradation of damaged mitochondria and cell survival following neonatal brain HI injury. Pleckstrin homology-like domain family A member 1 (PHLDA1) plays vital roles in the progression of various disorders including the regulation of oxidative stress, the immune responses and apoptosis. In the present study we investigated the role of PHLDA1 in HI-induced neuronal injury and further explored the mechanisms underlying PHLDA1-regulated mitophagy in vivo and in vitro. HI model was established in newborn rats by ligation of the left common carotid artery plus exposure to an oxygen-deficient chamber with 8% O2 and 92% N2. In vitro studies were conducted in primary hippocampal neurons subjected to oxygen and glucose deprivation/-reoxygenation (OGD/R). We showed that the expression of PHLDA1 was significantly upregulated in the hippocampus of HI newborn rats and in OGD/R-treated primary neurons. Knockdown of PHLDA1 in neonatal rats via lentiviral vector not only significantly ameliorated HI-induced hippocampal neuronal injury but also markedly improved long-term cognitive function outcomes, whereas overexpression of PHLDA1 in neonatal rats via lentiviral vector aggravated these outcomes. PHLDA1 knockdown in primary neurons significantly reversed the reduction of cell viability and increase in intracellular reactive oxygen species (ROS) levels, and attenuated OGD-induced mitochondrial dysfunction, whereas overexpression of PHLDA1 decreased these parameters. In OGD/R-treated primary hippocampal neurons, we revealed that PHLDA1 knockdown enhanced mitophagy by activating FUNDC1, which was abolished by FUNDC1 knockdown or pretreatment with mitophagy inhibitor Mdivi-1 (25 µM). Notably, pretreatment with Mdivi-1 or the knockdown of FUNDC1 not only increased brain infarct volume, but also abolished the neuroprotective effect of PHLDA1 knockdown in HI newborn rats. Together, these results demonstrate that PHLDA1 contributes to neonatal HI-induced brain injury via inhibition of FUNDC1-mediated neuronal mitophagy.

12.
Chem Commun (Camb) ; 60(40): 5294-5297, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38659410

ABSTRACT

We developed a triazatruxene-based hole transport material (HTM), 3Ka-DBT-3Ka, aiming to enhance band alignment and augment charge generation and collection in devices, as an alternative for 1,2-ethanedithiol (EDT). The PbS CQD solar cells employing 3Ka-DBT-3Ka as the HTM achieve a peak efficiency of 11.4%, surpassing devices employing the conventional PbS-EDT HTM (8.9%).

13.
Front Endocrinol (Lausanne) ; 15: 1365350, 2024.
Article in English | MEDLINE | ID: mdl-38628586

ABSTRACT

Background: Thyroid-associated ophthalmopathy (TAO) is the most prevalent autoimmune orbital condition, significantly impacting patients' appearance and quality of life. Early and accurate identification of active TAO along with timely treatment can enhance prognosis and reduce the occurrence of severe cases. Although the Clinical Activity Score (CAS) serves as an effective assessment system for TAO, it is susceptible to assessor experience bias. This study aimed to develop an ensemble deep learning system that combines anterior segment slit-lamp photographs of patients with facial images to simulate expert assessment of TAO. Method: The study included 156 patients with TAO who underwent detailed diagnosis and treatment at Shanxi Eye Hospital Affiliated to Shanxi Medical University from May 2020 to September 2023. Anterior segment slit-lamp photographs and facial images were used as different modalities and analyzed from multiple perspectives. Two ophthalmologists with more than 10 years of clinical experience independently determined the reference CAS for each image. An ensemble deep learning model based on the residual network was constructed under supervised learning to predict five key inflammatory signs (redness of the eyelids and conjunctiva, and swelling of the eyelids, conjunctiva, and caruncle or plica) associated with TAO, and to integrate these objective signs with two subjective symptoms (spontaneous retrobulbar pain and pain on attempted upward or downward gaze) in order to assess TAO activity. Results: The proposed model achieved 0.906 accuracy, 0.833 specificity, 0.906 precision, 0.906 recall, and 0.906 F1-score in active TAO diagnosis, demonstrating advanced performance in predicting CAS and TAO activity signs compared to conventional single-view unimodal approaches. The integration of multiple views and modalities, encompassing both anterior segment slit-lamp photographs and facial images, significantly improved the prediction accuracy of the model for TAO activity and CAS. Conclusion: The ensemble multi-view multimodal deep learning system developed in this study can more accurately assess the clinical activity of TAO than traditional methods that solely rely on facial images. This innovative approach is intended to enhance the efficiency of TAO activity assessment, providing a novel means for its comprehensive, early, and precise evaluation.


Subject(s)
Deep Learning , Graves Ophthalmopathy , Humans , Graves Ophthalmopathy/diagnostic imaging , Quality of Life , Orbit , Pain
14.
Molecules ; 29(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38675707

ABSTRACT

Wastewater containing organic dyes has become one of the important challenges in water treatment due to its high salt content and resistance to natural degradation. In this work, a novelty adsorbent, PEI-SMA, was prepared by grafting polyethyleneimine (PEI) onto styrene-maleic anhydride copolymer (SMA) through an amidation reaction. The various factors, such as pH, adsorbent dosage, contact time, dye concentration, and temperature, which may affect the adsorption of PEI-SMA for Reactive Black 5 (RB5), were systematically investigated by static adsorption experiments. The adsorption process of PEI-SMA for RB5 was more consistent with the Langmuir isotherm model and the pseudo-second-order model, suggesting a single-layer chemisorption. PEI-SMA exhibits excellent adsorption performance for RB5 dye, with a maximum adsorption capacity of 1749.19 mg g-1 at pH = 2. Additionally, PEI-SMA exhibited highly efficient RB5 competitive adsorption against coexisting Cl- and SO42- ions and cationic dyes. The adsorption mechanism was explored, and it can be explained as the synergistic effect of electrostatic interaction, hydrogen bonding and π-π interaction. This study demonstrates that PEI-SMA could act as a high performance and promising candidate for the effective adsorption of anionic dyes from aqueous solutions.

15.
J Med Chem ; 67(9): 7176-7196, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38679872

ABSTRACT

Peroxiredoxin (PRDX1) is a tumor-overexpressed antioxidant enzyme for eliminating excessive reactive oxygen species (ROS) to protect tumor cells from oxidative damage. Herein, a series of celastrol urea derivatives were developed based on its cocrystal structure with PRDX1, with the aim of pursuing a PRDX1-specific inhibitor. Among them, derivative 15 displayed potent anti-PRDX1 activity (IC50 = 0.35 µM) and antiproliferative potency against colon cancer cells. It covalently bound to Cys-173 of PRDX1 (KD = 0.37 µM), which was secured by the cocrystal structure of PRDX1 with an analogue of 15 while exhibiting weak inhibitory effects on PRDX2-PRDX6 (IC50 > 50 µM), indicating excellent PRDX1 selectivity. Treatment with 15 dose-dependently decreased the mitochondria membrane potential of SW620 cells, probably due to ROS induced by PRDX1 inhibition, leading to cell apoptosis. In colorectal cancer cell xenograft model, it displayed potent antitumor efficacy with superior safety to celastrol. Collectively, 15 represents a promising PRDX1 selective inhibitor for the development of anticolorectal cancer agents.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Pentacyclic Triterpenes , Peroxiredoxins , Urea , Humans , Peroxiredoxins/antagonists & inhibitors , Peroxiredoxins/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/chemistry , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Urea/analogs & derivatives , Urea/pharmacology , Urea/chemistry , Cell Line, Tumor , Mice , Cell Proliferation/drug effects , Apoptosis/drug effects , Structure-Activity Relationship , Mice, Nude , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Mice, Inbred BALB C , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/chemical synthesis , Reactive Oxygen Species/metabolism , Drug Discovery , Membrane Potential, Mitochondrial/drug effects , Xenograft Model Antitumor Assays , Drug Screening Assays, Antitumor
16.
BMC Ophthalmol ; 24(1): 172, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627651

ABSTRACT

PURPOSE: To assess the efficacy and safety of various intraocular lenses (IOLs), including standard monofocal, bifocal, trifocal, extended depth of focus (EDOF), and enhanced monofocal IOLs, post-cataract surgery through a network meta-analysis. METHODS: A systematic search of PubMed, Cochrane Library, and Web of Science was conducted to identify relevant studies from the past 5 years. Parameters such as binocular visual acuities, spectacle independence, contrast sensitivity (CS), and optical quality were used to evaluate efficacy and safety. Data from the selected studies were analyzed using Review Manager 5.4 and STATA 17.0 software. RESULTS: Twenty-eight Randomized Controlled Trials (RCTs) comprising 2465 subjects were included. Trifocal IOLs exhibited superior uncorrected near visual acuity (UNVA) compared to monofocal IOLs (MD: -0.35; 95% CI: -0.48, -0.22). Both trifocal (AcrySof IQ PanOptix IOLs group MD: -0.13; 95% CI: -0.21, -0.06) and EDOF IOLs (MD: -0.13; 95% CI: -0.17, -0.09) showed better uncorrected intermediate visual acuity (UIVA) than monofocal IOLs. Trifocal IOLs ranked highest in spectacle independence at various distances (AT LISAtri 839MP group: SUCRA 97.5% for distance, 80.7% for intermediate; AcrySof IQ PanOptix group: SUCRA 83.0% for near). CONCLUSIONS: For cataract patients who want to treat presbyopia, trifocal IOLs demonstrated better visual acuity and spectacle independence at near distances. Different types of trifocal IOL characteristics differ. EDOF and enhanced monofocal IOLs have improved visual quality at intermediate distances.Therefore, It is very important to select the appropriate IOLs based on the lens characteristics and patient needs.


Subject(s)
Cataract , Lenses, Intraocular , Phacoemulsification , Presbyopia , Humans , Lens Implantation, Intraocular , Presbyopia/surgery , Refraction, Ocular , Patient Satisfaction , Prosthesis Design , Randomized Controlled Trials as Topic
17.
Exp Appl Acarol ; 92(4): 871-883, 2024 May.
Article in English | MEDLINE | ID: mdl-38656472

ABSTRACT

The growing concern about migratory birds potentially spreading ticks due to global warming has become a significant issue. The city of Nantong in this study is situated along the East Asia-Australasian Flyway (EAAF), with numerous wetlands serving as roosting sites for migratory birds. We conducted an investigation of hard ticks and determined the phylogenetic characteristics of tick species in this city. We utilized three different genes for our study: the mitochondrial cytochrome oxidase subunit 1 (COX1) gene, the second internal transcribed spacer (ITS2), and the mitochondrial small subunit rRNA (12 S rRNA) gene. The predominant tick species were Haemaphysalis flava (H. flava) and Haemaphysalis longicornis (H. longicornis). Additionally, specimens of Haemaphysalis campanulata (H. campanulata) and Rhipicephalus sanguineus (R. sanguineus) were collected. The H. flava specimens in this study showed a close genetic relationship with those from inland provinces of China, as well as South Korea and Japan. Furthermore, samples of H. longicornis exhibited a close genetic relationship with those from South Korea, Japan, Australia, and the USA, as well as specific provinces in China. Furthermore, R. sanguineus specimens captured in Nantong showed genetic similarities with specimens from Egypt, Nigeria, and Argentina.


Subject(s)
Animal Migration , Birds , Electron Transport Complex IV , Ixodidae , Phylogeny , Animals , China , Ixodidae/genetics , Ixodidae/classification , Ixodidae/physiology , Electron Transport Complex IV/genetics , Electron Transport Complex IV/analysis , RNA, Ribosomal/genetics , RNA, Ribosomal/analysis , Nymph/growth & development , Nymph/classification , Nymph/genetics , Nymph/physiology , Arthropod Proteins/genetics , Arthropod Proteins/analysis , DNA, Ribosomal Spacer/analysis
18.
J Environ Manage ; 358: 120798, 2024 May.
Article in English | MEDLINE | ID: mdl-38603851

ABSTRACT

Adopting energy-saving and noise-reducing technologies in vehicle transportation has the potential to mitigate urban traffic pollution and promote sustainable urban mobility. However, a universal analytical framework for obtaining the combined energy savings and noise reduction patterns in vehicles is still lacking. This study addresses this gap by integrating a fundamental traffic noise model with a vehicle energy conservation equation. A theoretical framework was constructed that establishes the relationship between vehicle noise and energy consumption, with the theoretical origins of this framework explained. By summarizing a substantial body of classical literature, the typical model's properties are analyzed through the principle of optimality, and the noise interval for combined vehicle energy-saving and noise-reducing is determined. Subsequently, a rigorous vehicle experiment was conducted to validate the proposed framework's effectiveness, utilizing synchronized data on energy consumption and noise. The findings indicate that vehicles can achieve unconstrained combined energy-saving and noise-reducing in four driving states and conditional combined energy-saving and noise-reducing in five driving states. The Recall index demonstrates a verification rate exceeding 0.62 for the combined energy-saving and noise-reducing rules. This research provides valuable insights to support energy-saving and noise-reducing measures in urban traffic.


Subject(s)
Noise, Transportation , Transportation , Noise, Transportation/prevention & control , Noise/prevention & control , Models, Theoretical , Cities , Motor Vehicles
19.
J Nanobiotechnology ; 22(1): 200, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654299

ABSTRACT

The glymphatic system plays an important role in the transportation of cerebrospinal fluid (CSF) and the clearance of metabolite waste in brain. However, current imaging modalities for studying the glymphatic system are limited. Herein, we apply NIR-II nanoprobes with non-invasive and high-contrast advantages to comprehensively explore the function of glymphatic system in mice under anesthesia and cerebral ischemia-reperfusion injury conditions. Our results show that the supplement drug dexmedetomidine (Dex) enhances CSF influx in the brain, decreases its outflow to mandibular lymph nodes, and leads to significant differences in CSF accumulation pattern in the spine compared to isoflurane (ISO) alone, while both ISO and Dex do not affect the clearance of tracer-filled CSF into blood circulation. Notably, we confirm the compromised glymphatic function after cerebral ischemia-reperfusion injury, leading to impaired glymphatic influx and reduced glymphatic efflux. This technique has great potential to elucidate the underlying mechanisms between the glymphatic system and central nervous system diseases.


Subject(s)
Glymphatic System , Reperfusion Injury , Animals , Glymphatic System/metabolism , Mice , Reperfusion Injury/metabolism , Male , Mice, Inbred C57BL , Brain/metabolism , Dexmedetomidine/pharmacology , Stroke , Anesthesia , Isoflurane/pharmacology , Nanoparticles/chemistry , Cerebrospinal Fluid/metabolism , Cerebrospinal Fluid/chemistry
20.
Front Mol Neurosci ; 17: 1366855, 2024.
Article in English | MEDLINE | ID: mdl-38685914

ABSTRACT

As wireless communication devices gain popularity, concerns about the potential risks of environmental exposure to complex frequency electromagnetic radiation (EMR) on mental health have become a public health issue. Historically, EMR research has predominantly focused on single- frequency electromagnetic waves, neglecting the study of multi-frequency electromagnetic waves, which more accurately represent everyday life. To address these concerns, our study compared the emotional effects of single-frequency and dual-frequency EMR while exploring potential molecular mechanisms and intervention targets. Our results revealed that single-frequency EMR at 2.65 or 0.8 GHz did not induce anxiety-like behavior in mice. However, exposure to dual-frequency EMR at 2.65/0.8 GHz significantly led to anxiety-like behavior in mice. Further analysis of mouse sera revealed substantial increases in corticosterone and corticotrophin releasing hormone levels following exposure to 2.65/0.8 GHz EMR. Transcriptome sequencing indicated a significant decrease in the expression of Cnr1, encoding cannabinoid receptor 1 Type (CB1R), in the cerebral. This finding was consistently verified through western blot analysis, revealing a substantial reduction in CB1R content. Additionally, a significant decrease in the endocannabinoid 2-arachidonoylglycerol was observed in the cerebral cortex. Remarkably, administering the cannabinoid receptor agonist Win55-212-2 significantly alleviated the anxiety-like behavior, and the cannabinoid receptor antagonist AM251 effectively counteracted the anti-anxiety effects of Win55-212-2. In summary, our research confirmed that dual-frequency EMR is more likely to induce anxiety-like behavior in mice than single-frequency EMR, with implications for the hypothalamic-pituitary-adrenal axis and the endocannabinoid system. Furthermore, our findings suggest that Win55-212-2 may represent a novel avenue for researching and developing anti-EMR drugs.

SELECTION OF CITATIONS
SEARCH DETAIL
...