Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(10): 17667-17688, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858944

ABSTRACT

We propose a high-resolution, broad-spectral-range spatial heterodyne Raman spectrometer (SHRS) having separate filters and multi-gratings (SFMG). A prototype of the SFMG-SHRS is built using multi-gratings with four sub-gratings having groove densities of 320, 298, 276, and 254 gr/mm and separate filters with filter bands corresponding to the sub-gratings. We use the SFMG-SHRS to measure the Raman spectra of inorganic and organic compounds with various integration times, laser power, and transparent containers, compare measurements of microplastics with and without the separate filters, and measure mixtures of inorganic powders and organic solutions. The designed SFMG-SHRS makes high-resolution, broad-spectral-range Raman measurements with improved signal-to-noise ratios and visibility of weak Raman peaks even in the presence of fluorescence.

2.
Opt Express ; 32(10): 17819-17836, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38858953

ABSTRACT

We propose a spatial heterodyne Raman spectrometer (SHRS) based on a field-widened grating-echelle (FWGE). A normal grating is combined with an echelle grating in a conventional spatial heterodyne spectrometer to eliminate ghost images without using masks, and prevents interference among the spatial frequencies of different diffraction orders. Mathematical expressions and derivation processes are given for the spectral parameters in the FWGE-SHRS and a verification breadboard system is fabricated. The FWGE-SHRS measures Raman spectra of single chemicals and mixed targets with different integration times, laser powers, concentrations, and transparent containers. The results of the experiments demonstrate that the FWGE-SHRS is suitable for high-resolution, broadband Raman measurements for a wide range of applications.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124099, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38513421

ABSTRACT

Microplastic pollution has become a global environmental problem that cannot be ignored. Raman spectroscopy has been widely used for microplastics detection because it can be performed in real-time and is non-destructive. Conventional detection techniques have had weak signals and low signal-to-noise ratios (SNR). Here, an efficient and reliable detection method is demonstrated. Specifically, a confocal microscope combined with an echelle-grating spatial-heterodyne Raman spectrometer (CM-ESHRS) was constructed. The confocal microscopy and the characteristics of the echelle grating enabled high optical throughput, high SNR, high spectral resolution, and a wide spectral detection band. After spectral calibration, the resolution approached 0.67 cm-1, moreover, the spectral detection range for a single order was 1372.16 cm-1. We detected and analyzed nineteen kinds of microplastics, such as polyamide, polypropylene, and polymethylmethacrylate, and the main vibrational spectral bands were categorized. Compared with commercial dispersive spectrometers, CM-ESHRS has a higher optical throughput. In addition, we examined microplastics with various particle sizes, microplastics mixed in flour, and microplastic particles of different materials under mixed conditions, all of which yielded complete spectral information. Overall, CM-ESHRS exhibits good potential applications for the detection of microplastics.

4.
Opt Express ; 31(19): 31284-31299, 2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37710651

ABSTRACT

This paper proposes a spatial heterodyne Raman spectrometer (SHRS) based on a multi-Littrow-angle multi-grating (MLAMG). Compared with a conventional multi-grating, the MLAMG not only provides higher spectral resolution and a broader spectral range, but is also easier to produce. A verification breadboard system is built using the MLAMG combined with four sub-gratings with a groove density of 300 gr/mm and Littrow angles of 4.6355°, 4.8536°, 5.0820°, and 5.3253°. This MLAMG-SHRS is used to obtain the Raman spectra of inorganic solids and organic solutions for different integration times, laser powers, suspension contents, and containers. The Raman spectra of mixed targets and minerals are also presented. The experiments demonstrate that the MLAMG-SHRS is suitable for broadband measurements at high spectral resolution in a wide range of potential applications.

5.
Chem Commun (Camb) ; 59(64): 9774-9777, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37486167

ABSTRACT

S-Nitrosothiols (SNOs) serve as endogenous carriers and donors of NO within living cells, releasing nitrosonium ions (NO+), NO, or other nitroso derivatives. In this study, we present a bioinspired {Co(NO)2}10 complex 1 that achieved S-nitrosation towards Cys residues. The incorporation of a ferrocenyl group in 1 allowed for fine-tuning of the nitrosation reaction, taking advantage of the redox ability of Cys residues. Complex 1 was synthesized and characterized, demonstrating its NO translation reactivity. Furthermore, complex 1 successfully converted Cys into S-nitrosocysteine (Cys-SNO), as confirmed by UV-Vis, IR, and XAS spectroscopy. This study presents a promising approach for S-nitrosation of Cys residues for further exploration in the modification of Cys-containing peptides.


Subject(s)
Cysteine , S-Nitrosothiols , Nitrosation , Cysteine/chemistry , S-Nitrosothiols/chemistry , S-Nitrosothiols/metabolism , Nitric Oxide/chemistry , Oxidation-Reduction
6.
Opt Express ; 31(12): 18702-18716, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37381305

ABSTRACT

The echelle spectrometer is a high-resolution spectrometer that can realize transient direct readings of a full spectrum. To improve the accuracy of the spectrogram restoration model in calibration, multiple-integral time fusion, and an improved adaptive-threshold centroid algorithm are used to overcome noise and improve the accuracy of calculating the light spot position. A seven-parameter pyramid-traversal method is proposed to optimize the parameters of the spectrogram restoration model. The deviation of the spectrogram model is significantly reduced after the parameters are optimized, and the deviation curve fluctuation becomes mild, which greatly improves the model's accuracy after curve fitting.The test results show that the accuracy of the spot position determination algorithm proposed in this paper is 0.1 pixels. In addition to this, the accuracy of the spectral restoration model is controlled within 0.3 pixels in a short-wave stage and 0.7 pixels in a long-wave stage. Compared with the traditional algorithm, the accuracy of spectrogram restoration is more than two times, and the spectral calibration time is less than 45 min.

7.
Opt Express ; 31(11): 18190-18209, 2023 May 22.
Article in English | MEDLINE | ID: mdl-37381535

ABSTRACT

This paper presents a multi-grating-based cross-dispersed spatial heterodyne spectrometer (MGCDSHS). The principle of generation of two-dimensional interferograms for two cases, where the light beam is diffracted by one sub-grating or two sub-gratings, is given and equations for the interferogram parameters in these two cases are derived. An instrument design with numerical simulations is presented that demonstrates the spectrometer's ability to simultaneously record separate interferograms corresponding to different spectral features with high resolution over a broad spectral range. The design solves the mutual interference problem caused by overlapping of the interferograms, and also provides the high spectral resolution and broad spectral measurement range that cannot be achieved using conventional SHSs. Additionally, by introducing cylindrical lens groups, the MGCDSHS solves the throughput loss and light intensity reduction problems caused by direct use of multi-gratings. The MGCDSHS is compact, highly stable, and high-throughput. These advantages make the MGCDSHS suitable for high-sensitivity, high-resolution, and broadband spectral measurements.

8.
Opt Express ; 30(11): 18854-18855, 2022 May 23.
Article in English | MEDLINE | ID: mdl-36221677

ABSTRACT

We present an erratum to our article [Opt. Express30(7), 10547 (2022)10.1364/OE.448504].

9.
Opt Express ; 30(7): 10547-10562, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-35473018

ABSTRACT

A cross-dispersed spatial heterodyne spectrometer (CDSHS) that integrates a spatial heterodyne spectrometer (SHS), a reflection grating, and a cylindrical lens is presented. Expressions for the width, height, and location of the cross-dispersed interferograms corresponding to narrow spectral regions are given. An example CDSHS design, including numerical simulations of the interferogram and the spectrum, is provided to illustrate the designed system. The results show that the CDSHS can simultaneously disperse longitudinally and laterally to record interferograms corresponding to different narrow spectral regions with different rows on a charge-coupled device, and obtain independent detailed spectra simultaneously with a high signal-to-noise ratio. Additionally, high-intensity light rays at a specific wavelength in the CDSHS do not interfere with the detailed spectra of the other wavelengths. Simultaneously, the CDSHS offers advantages including high resolution, high throughput, broadband operation, compactness, and zero moving parts. The CDSHS shows great application potential in fields including multiple spectral feature measurement, weak spectral measurements.

10.
Inorg Chem ; 61(18): 7201-7206, 2022 May 09.
Article in English | MEDLINE | ID: mdl-35476414

ABSTRACT

Here, we report a weakly bound ionic cocrystal, (Et3NCH2Cl)2[ZnCl4], which undergoes a reversible structural phase transition owing to the switched molecular dynamics of the quasi-spherical (Et3NCH2Cl)+ cation from static to dynamic. Interestingly, a unique rolling and moving mechanism is uncovered for such a cation in the high-temperature phase, where its two methylene groups exhibit different kinetic energy barriers. This study provides a meaningful insight into the solid-state molecular dynamics of large-size quasi-spherical molecules that contain both a rigid core and flexible shell.

11.
Opt Express ; 29(17): 26713-26723, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34615100

ABSTRACT

Snapshot microlens array microscopic hyperspectral imaging systems do not require a scanning process and obtain (x,y,λ) three-dimensional data cubes in one shot. Currently, the three-dimensional spectra image data are interleaved on a charge-coupled device detector, which increases subsequent data processing difficulty. The optical design software cannot simulate actual engineering installation and adjustment results accurately and the tracking results cannot guide precise rapid online calibration of the snapshot microlens array microscopic hyperspectral imaging system. To solve these problems, we propose an accurate spectral image reconstruction model based on optical tracing, derive spatial dispersion equations for the prisms and gratings, establish an algorithm model for the correspondence between the microlens array's surface dispersion spectral distribution and its imaging position, and propose a three-dimensional spectral image reconstruction algorithm. Experimental results show that this algorithm's actual spectral calibration error is better than 0.2 nm. This meets the image processing requirements of snapshot microlens array microscopic hyperspectral systems.

12.
J Multidiscip Healthc ; 14: 1107-1117, 2021.
Article in English | MEDLINE | ID: mdl-34017176

ABSTRACT

The clinical impact of nutrition therapy in critically ill patients has been known for years, and relevant guidelines regarding nutrition therapy have emphasized the importance of proteins. During critical illness, such as sepsis or the state following major surgery, major trauma, or major burn injury, patients suffer from a high degree of stress/inflammation, and during this time, metabolism deviates from homeostasis. The increased degradation of endogenous proteins in response to stress hormones is among the most important events in the acute phase of critical illness. Currently published evidence suggests that adequate protein supplementation might improve the clinical outcomes of critically ill patients. The role of sufficient protein supplementation may even surpass that of caloric supplementation. In this review, we focus on relevant physiological alterations in critical illness, the effects of critical illness on protein metabolism, nutrition therapy in clinical practice, and the function of specific amino acids.

13.
Appl Opt ; 60(7): 1896-1902, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33690279

ABSTRACT

We propose a microlens array-type snapshot hyperspectral microscope system that can provide spatial spectrum sampling according to detector frame rates for the biomedical domain. The system uses a shared optical path design. One path is used to perform direct microscopic imaging with high spatial resolution, while the other is used to collect microscopic images through a microlens array; the images are then spatially cut and reimaged such that they are spaced simultaneously by the prism-grating type hyperspectral imager's dispersion. Rapid acquisition of a three-dimensional data cube measuring 28×14×180 (x×y×λ) can be performed at the detector's frame rate. The system has a spatial resolution of 2.5 µm and can achieve 180-channel sampling of a 100 nm spectrum in the 400-800 nm spectral range with spectral resolution of approximately 0.56 nm. Spectral imaging results from biological samples show that the microlens array-type snapshot hyperspectral microscope system may potentially be applied in real-time biological spectral imaging.


Subject(s)
Biomedical Research , Diagnostic Imaging/instrumentation , Microscopy/instrumentation , Equipment Design , Humans , Imaging, Three-Dimensional/methods , Spectrum Analysis , Stomach Neoplasms/pathology
14.
World J Surg Oncol ; 18(1): 195, 2020 Aug 07.
Article in English | MEDLINE | ID: mdl-32767993

ABSTRACT

BACKGROUND: Although hereditary non-polyposis colorectal cancer (HNPCC) could be subtyped into proficient or deficient mismatch repair gene expression (pMMR or dMMR), distinct clinical features between these two subgroups patients were rarely reported. METHODS: We retrospectively analyzed 175 hereditary non-polyposis colorectal cancer (HNPCC) patients between January 1995 and December 2012. Cox proportional hazards model was used to compare the differences between two subgroups. RESULTS: Significant differences of disease free survival (DFS) and overall survival (OS) exist between dMMR and pMMR. In addition to other factors including younger mean age of diagnosis for dMMR patients (48.6 years vs. 54.3 years), operation type (more extended colectomy for dMMR 35.8% vs. 14.5%), tumor location (right colon predominance for dMMR 61.7% vs. 27.3% and more rectum cases for pMMR 41.8% vs. 11.7%), tumor differentiation (more poor differentiation for dMMR 23.3% vs. 9.0%), N staging (more N0 cases for dMMR 70.8% vs. 50.9%), more frequently presence of extra-colonic tumors for dMMR (16.7% vs.1.8%), and lower recurrence rates (9.1% vs.35.3%). Significantly different cumulative incidences of developing metachronous colorectal cancer were observed with 6.18 for pMMR patients and 20.57 person-years for dMMR patients (p < 0.001). CONCLUSIONS: Distinct clinicopathological features significantly exist between dMMR and pMMR subtypes patient, MMR status should be consider to tailor operation types and follow up surveillance between these two subgroups patients who all fulfilled with Amsterdam-II criteria.


Subject(s)
Colonic Neoplasms , Colorectal Neoplasms , Colonic Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/surgery , DNA Mismatch Repair , Follow-Up Studies , Humans , Middle Aged , Neoplasm Recurrence, Local/epidemiology , Neoplasm Recurrence, Local/surgery , Neoplasm Staging , Prognosis , Retrospective Studies
15.
Pest Manag Sci ; 76(8): 2601-2608, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32077583

ABSTRACT

BACKGROUND: Multiple-herbicide resistance in Lolium rigidum and other weed species is increasingly exerting pressure on herbicide discovery research for solutions against resistance-prone weeds. In this study we investigate: (i) the responses of L. rigidum populations and wheat to the new herbicide cinmethylin in comparison with other pre-emergence herbicides, (ii) the effect of seed burial depths on cinmethylin efficacy and crop selectivity, and (iii) the basis of cinmethylin selectivity in wheat. RESULTS: Cinmethylin at 400 g ha-1 controls herbicide-susceptible and multiple-resistant L. rigidum, with a reduction of >85% in plant emergence and 90% in aboveground biomass. Cinmethylin provides effective control of a large number of field populations of L. rigidum with evident resistance to trifluralin. When the wheat seed is buried ≥1 cm below the cinmethylin-treated soil surface, the emergence of crop seedlings is not different from the untreated control. The organophosphate insecticide phorate synergizes cinmethylin toxicity in wheat, with an LD50 of 682 g ha-1 in the absence of phorate versus 109 g ha-1 in the presence of phorate (84% reduction). The synergistic effect of phorate with cinmethylin on herbicide-susceptible L. rigidum appears smaller (a 44% reduction in the LD50 of cinmethylin). CONCLUSIONS: Cinmethylin is effective in controlling multiple-resistant L. rigidum and appears safe for wheat when the seed is separated at depth from the herbicide applied to the soil surface. The basis of this metabolism-based selectivity is likely regulated by cytochrome P450 monooxygenases. © 2020 Society of Chemical Industry.


Subject(s)
Lolium , Herbicides , Trifluralin , Triticum
16.
Appl Opt ; 57(33): 9735-9745, 2018 Nov 20.
Article in English | MEDLINE | ID: mdl-30462004

ABSTRACT

Spatial heterodyne Raman spectrometry (SHRS) is a spectral analysis technique used to study material structures and compositions. We propose a multi-grating SHRS system that uses a multi-grating module rather than the single grating used to terminate each arm in traditional spatial heterodyne spectrometry (SHS). The proposed system not only retains the advantages of traditional SHS but also resolves the mutual limitation between system spectral range and resolution. The increased spectral range and resolution that can be achieved in detection are dependent on the number of sub-gratings used in the module. A verification system was built using 130 gr/mm and 150 gr/mm sub-gratings and calibrated. Under different experimental conditions (including laser power, integration time, container material and thickness, pure and mixed samples, and standoff experiments), the backscattered Raman spectra of different types of targets (including organic solutions, inorganic powders, and minerals) were tested. The multi-grating SHRS shows good performance for broad spectral range and high-resolution Raman detection.

17.
Appl Opt ; 57(10): 2647-2652, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29714252

ABSTRACT

To solve the problem where the actual grating aperture decreases with an increasing scanning angle during the scanning of a three-grating monochromator, we propose an off-axis assembly method for the worm gear turntable that makes it possible to suppress this aperture reduction. We simulated and compared the traditional assembly method with the off-axis assembly method in the three-grating monochromator. Results show that the actual grating aperture can be improved by the off-axis assembly method. In fact, for any one of the three gratings, when the monochromator outputs the longest wavelength in the corresponding wavelength band, the actual grating aperture increases by 45.93%. Over the entire monochromator output band, the actual grating aperture increased by an average of 32.56% and can thus improve the monochromator's output energy. Improvement of the actual grating aperture can also reduce the stray light intensity in the monochromator and improve its output signal-to-noise ratio.

18.
Exp Ther Med ; 15(1): 487-493, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29387201

ABSTRACT

Corin is a serine protease that is important for the regulation of blood pressure and water balance. Corin was initially discovered in the heart, however, it has also been detected in kidney cells, though its function in the kidneys is unclear. To further investigate the function of corin in the kidney, the present study analyzed the levels of corin in urine and blood samples collected from normal individuals and patients with primary proteinuric diseases. The associations between the levels of corin, and the cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) were then assessed. The results demonstrated that corin was detectable in the urine and plasma following an enzyme-linked immunosorbent assay; the level of corin in the urine was associated with the level of urinary ß2-microglobulin (P=0.01), which was indicative of renal tubular injury. When compared with normal individuals, the levels of urinary corin in proteinuric patients were markedly increased (P=0.02), and were also associated with IL-1ß (P=0.03). This correlation between corin and IL-1ß was confirmed in vitro using 293 cells. As the IL-1ß concentrations increased (0, 0.1, 1, 10 ng/ml), an elevation in the level of corin was observed in the culture medium (P<0.01); however, the amount of corin was not markedly altered in the cell lysate (P>0.05). In addition, when TNF-α reached 10 ng/ml, the level of corin in the medium increased significantly when compared with the control group (0 ng/ml; P=0.02), however, no significant difference in corin levels was detected in the cell lysate. The results suggest that the cytokines IL-1ß and TNF-α may increase urinary corin in patients with primary proteinuric kidney diseases. Cytokines may accelerate corin shedding from the cell membrane of renal tubule epithelial cells. These findings indicate that corin may be associated with kidney inflammation and injury.

19.
Physiol Plant ; 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29364528

ABSTRACT

Although nitrate represents an important nitrogen (N) source for maize, a major crop of dryland areas, the molecular mechanisms of nitrate uptake and assimilation remain poorly understood. Here, we identified nine maize NIN-like protein (ZmNLP) genes and analyzed the function of one member, ZmNLP3.1, in nitrate nutrition and signaling. The NLP family genes were clustered into three clades in a phylogenic tree. Comparative genomic analysis showed that most ZmNLP genes had collinear relationships to the corresponding NLPs in rice, and that the expansion of the ZmNLP family resulted from segmental duplications in the maize genome. Quantitative PCR analysis revealed the expression of ZmNLP2.1, ZmNLP2.2, ZmNLP3.1, ZmNLP3.2, ZmNLP3.3, and ZmNLP3.4 was induced by nitrate in maize roots. The function of ZmNLP3.1 was investigated by overexpressing it in the Arabidopsis nlp7-1 mutant, which is defective in the AtNLP7 gene for nitrate signaling and assimilation. Ectopic expression of ZmNLP3.1 restored the N-deficient phenotypes of nlp7-1 under nitrate-replete conditions in terms of shoot biomass, root morphology and nitrate assimilation. Furthermore, the nitrate induction of NRT2.1, NIA1, and NiR1 gene expression was recovered in the 35S::ZmNLP3.1/nlp7-1 transgenic lines, indicating that ZmNLP3.1 plays essential roles in nitrate signaling. Taken together, these results suggest that ZmNLP3.1 plays an essential role in regulating nitrate signaling and assimilation processes, and represents a valuable candidate for developing transgenic maize cultivars with high N-use efficiency.

20.
Appl Opt ; 57(34): F8-F14, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30645275

ABSTRACT

A miniaturized portable short-wave infrared imaging spectroscopy optical system is designed based on a prism-grating dispersion module. We established a prism-grating model to calculate the optimal combination of prism and grating parameters to balance spectral smile over the entire band. The design method for the telescopic system and spectroscopic system combines independent design with integrated optimization. The system's spectral smile and spectral keystone are less than 15 µm and less than half a pixel, respectively. The total optical system length is 230 mm, which meets the miniaturization requirements for airborne systems. The system's spatial resolution is 1 mrad, and its average spectral resolution is 6.2 nm. The system offers the advantages of large relative aperture, excellent imaging quality, reduced spectral smile, and spectral keystone, miniaturization, and portability.

SELECTION OF CITATIONS
SEARCH DETAIL
...