Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 15(4)2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38674409

ABSTRACT

The wheat head blight disease caused by Fusarium graminearum is a major concern for food security and the health of both humans and animals. As a pathogenic microorganism, F. graminearum produces virulence factors during infection to increase pathogenicity, including various macromolecular and small molecular compounds. Among these virulence factors, secreted proteins and deoxynivalenol (DON) are important weapons for the expansion and colonization of F. graminearum. Besides the presence of virulence factors, sexual reproduction is also crucial for the infection process of F. graminearum and is indispensable for the emergence and spread of wheat head blight. Over the last ten years, there have been notable breakthroughs in researching the virulence factors and sexual reproduction of F. graminearum. This review aims to analyze the research progress of sexual reproduction, secreted proteins, and DON of F. graminearum, emphasizing the regulation of sexual reproduction and DON synthesis. We also discuss the application of new gene engineering technologies in the prevention and control of wheat head blight.


Subject(s)
Fusarium , Plant Diseases , Trichothecenes , Triticum , Fusarium/genetics , Fusarium/pathogenicity , Fusarium/metabolism , Trichothecenes/metabolism , Triticum/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Virulence Factors/genetics , Gene Expression Regulation, Fungal , Fungal Proteins/genetics , Fungal Proteins/metabolism , Virulence/genetics , Reproduction/genetics
2.
Plant Commun ; 5(1): 100679, 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-37653727

ABSTRACT

Plant diseases cause enormous economic losses in agriculture and threaten global food security, and application of agrochemicals is an important method of crop disease control. Exploration of disease-resistance mechanisms and synthesis of highly bioactive agrochemicals are thus important research objectives. Here, we show that propranolol, a phosphatidate phosphatase (Pah) inhibitor, effectively suppresses fungal growth, sporulation, sexual reproduction, and infection of diverse plants. The MoPah1 enzyme activity of the rice blast fungus Magnaporthe oryzae is inhibited by propranolol. Alterations in lipid metabolism are associated with inhibited hyphal growth and appressorium formation caused by propranolol in M. oryzae. Propranolol inhibits a broad spectrum of 12 plant pathogens, effectively inhibiting infection of barley, wheat, maize, tomato, and pear. To improve antifungal capacity, we synthesized a series of propranolol derivatives, one of which shows a 16-fold increase in antifungal ability and binds directly to MoPah1. Propranolol and its derivatives can also reduce the severity of rice blast and Fusarium head blight of wheat in the field. Taken together, our results demonstrate that propranolol suppresses fungal development and infection through mechanisms involved in lipid metabolism. Propranolol and its derivatives may therefore be promising candidates for fungicide development.


Subject(s)
Fungicides, Industrial , Magnaporthe , Oryza , Fungicides, Industrial/pharmacology , Fungicides, Industrial/metabolism , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Oryza/microbiology , Phosphatidate Phosphatase/metabolism , Phosphatidate Phosphatase/pharmacology , Propranolol/pharmacology , Propranolol/metabolism , Magnaporthe/metabolism , Triticum
3.
Toxins (Basel) ; 15(12)2023 12 15.
Article in English | MEDLINE | ID: mdl-38133206

ABSTRACT

Fusarium heading blight (FHB) is a devastating disease in wheat, primarily caused by field invasion of Fusarium graminearum. Due to the scarcity of resistant wheat varieties, the agricultural sector resorts to chemical fungicides to control FHB incidence. On the other hand, biocontrol represents a promising, eco-friendly approach aligned with sustainable and green agriculture concepts. In the present study, a bacterial endophyte, Pseudescherichia sp. (GSE25), was isolated from wheat seeds and identified through complete genome sequencing and phylogenetic analysis. In vitro testing of this endophytic strain demonstrated strong antifungal activity against F. graminearum PH-1 by inhibiting spore germination, suppressing germ tube growth, and causing cell membrane damage. Under field conditions, the strain GSE25 significantly reduced the FHB incidence and the associated deoxynivalenol mycotoxin accumulation by over 60% and 80%, respectively. These findings highlight the potential of the isolated bacterial endophyte Pseudescherichia sp. GSE25 strain as a biocontrol agent in protecting wheat from FHB-caused F. graminearum. This is the first report showing a biocontrol effect of Pseudescherichia sp. a strain against phytopathogens.


Subject(s)
Fusarium , Fusarium/metabolism , Triticum/microbiology , Phylogeny , Enterobacteriaceae , Plant Diseases/prevention & control , Plant Diseases/microbiology
4.
PLoS Genet ; 18(12): e1010510, 2022 12.
Article in English | MEDLINE | ID: mdl-36477146

ABSTRACT

The cAMP-PKA pathway is critical for regulating growth, differentiation, and pathogenesis in fungal pathogens. In Fusarium graminearum, mutants deleted of PKR regulatory-subunit of PKA had severe defects but often produced spontaneous suppressors. In this study eleven pkr suppressors were found to have mutations in FgSNT1, a component of the Set3C histone deacetylase (HDAC) complex, that result in the truncation of its C-terminal region. Targeted deletion of the C-terminal 98 aa (CT98) in FgSNT1 suppressed the defects of pkr in growth and H4 acetylation. CT98 truncation also increased the interaction of FgSnt1 with Hdf1, a major HDAC in the Set3 complex. The pkr mutant had no detectable expression of the Cpk1 catalytic subunit and PKA activities, which was not suppressed by mutations in FgSNT1. Cpk1 directly interacted with the N-terminal region of FgSnt1 and phosphorylated it at S443, a conserved PKA-phosphorylation site. CT98 of FgSnt1 carrying the S443D mutation interacted with its own N-terminal region. Expression of FgSNT1S443D rescued the defects of pkr in growth and H4 acetylation. Therefore, phosphorylation at S443 and suppressor mutations may relieve self-inhibitory binding of FgSnt1 and increase its interaction with Hdf1 and H4 acetylation, indicating a key role of FgSnt1 in crosstalk between cAMP signaling and Set3 complex.


Subject(s)
Histone Deacetylases , Histones , Histones/genetics , Histone Deacetylases/genetics
5.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36142119

ABSTRACT

For optimal proteolytic function, the proteasome core (CP or 20S) must associate with activators. The cAMP-PKA pathway is reported to affect the activity of the proteasome in humans. However, the relationship between the proteasome and PKA is not well characterized. Our results showed that the major catalytic subunit Cpk1 was degraded without the protection of Pkr. Eleven (out of 67) pkr suppressors had FgBlm10 C-terminal truncation, one suppressor had an amino acid change mutation in the PRE6 ortholog (FGRRES_07282), and one in the PRE5 ortholog (FGRRES_05222). These mutations rescued the defects in growth and conidial morphology, Cpk1 stability, and PKA activities in the pkr mutant. The interaction of FgBlm10 with FgPre5 and FgPre6 were detected by co-immunoprecipitation, and the essential elements for their interaction were characterized, including the FgBlm10 C-terminus, amino acid D82 of FgPre6 and K62 of FgPre5. Additional FgBlm10-interacting proteins were identified in the wild type and pkr mutant, suggesting that PKA regulates the preference of FgBlm10-mediated proteasome assembly. In addition, PKA indirectly affected the phosphorylation of FgBlm10, and its localization in the nucleus. The truncation of the FgBlm10 C terminus also enhanced nuclear import and bleomycin resistance, suggesting its role in proteasome assembly at DNA damage sites. Collectively, our data demonstrated that regulation between PKA and proteasome degradation is critical for the vegetative growth of F. graminearum.


Subject(s)
Bacterial Proteins/metabolism , Fusarium , Proteasome Endopeptidase Complex , Amino Acids/metabolism , Bleomycin , Catalytic Domain , Cyclic AMP-Dependent Protein Kinases/genetics , Cyclic AMP-Dependent Protein Kinases/metabolism , Fusarium/genetics , Humans , Proteasome Endopeptidase Complex/metabolism
6.
J Fungi (Basel) ; 7(9)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34575793

ABSTRACT

The fungal plant pathogen, Fusarium graminearum, contains two genes, FgCPK1 and FgCPK2, encoding the catalytic subunits of cAMP-dependent protein kinase A. FgCPK1 and FgCPK2 are responsible for most of the PKA activities and have overlapping functions in various cellular processes in F. graminearum. The cpk1 cpk2 double mutant was significantly reduced in growth, rarely produced conidia, and was non-pathogenic. In this study, we found that the cpk1 cpk2 double mutant was unstable and produced fast-growing spontaneous sectors that were defective in plant infection. All spontaneous suppressor strains had mutations in FgSFL1, a transcription factor gene orthologous to SFL1 in yeast. Thirteen suppressor strains had non-sense mutations at Q501, three suppressor strains had frameshift mutations at W198, and five suppressor strains had mutations in the HSF binding domain of FgSfl1. Only one suppressor strain had both a non-synonymous mutation at H225 and a non-sense mutation at R490. We generated the SFL1 deletion mutant and found that it produced less than 2% of conidia than that of the wild-type strain PH-1. The sfl1 mutant was significantly reduced in the number of perithecia on carrot agar plates at 7 days post-fertilization (dpf). When incubated for more than 12 days, ascospore cirrhi were observed on the sfl1 mutant perithecia. The infection ability of the sfl1 deletion mutant was also obviously defective. Furthermore, we found that in addition to the S223 and S559 phosphorylation sites, FgSFL1 had another predicted phosphorylation site: T452. Interestingly, the S223 phosphorylation site was responsible for sexual reproduction, and the T452 phosphorylation site was responsible for growth and sexual reproduction. Only the S559 phosphorylation site was found to play an important role in conidiation, sexual reproduction, and infection. Overall, our results indicate that FgSFL1 and its conserved PKA phosphorylation sites are important for vegetative growth, conidiation, sexual reproduction, and pathogenesis in F. graminearum.

SELECTION OF CITATIONS
SEARCH DETAIL
...