Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 121
Filter
1.
Phys Rev Lett ; 132(24): 243403, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38949354

ABSTRACT

A unitary Fermi gas in an isotropic harmonic trap is predicted to show scale and conformal symmetry that have important consequences in its thermodynamic and dynamical properties. By experimentally realizing a unitary Fermi gas in an isotropic harmonic trap, we demonstrate its universal expansion dynamics along each direction and at different temperatures. We show that as a consequence of SO(2,1) symmetry, the measured release energy is equal to that of the trapping energy. We further observe the breathing mode with an oscillation frequency twice the trapping frequency and a small damping rate, providing the evidence of SO(2,1) symmetry. In addition, away from resonance when scale invariance is broken, we determine the effective exponent γ that relates the chemical potential and average density along the BEC-BCS crossover, which qualitatively agrees with the mean field predictions. This Letter opens the possibility of studying nonequilibrium dynamics in a conformal invariant system in the future.

2.
Ecotoxicol Environ Saf ; 282: 116722, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003869

ABSTRACT

Hexaconazole is a widely used and frequently detected fungicide which is also reported to be persistent in environment. The toxicity of Hex to non-organisms such as reproductive toxicity, endocrine disrupting toxicity, and carcinogenic toxicity had been reported. However, study on the Hex-induced neurotoxicity is rare and the mechanism is still unclear. Therefore, in this study, environmental related concentrations of Hex were chosen to investigate the effects of Hex on nervous system from the aspect of biological rhythm under 90 d sub-chronic exposure. The results showed that Hex significantly affected the cognitive function of rats resulting in the deterioration of learning and memory ability and induced oxidative stress in rat brain. Moreover, the notable changes of neurotransmitters in rat brain suggested the disorder of nerve signaling conduction induced by Hex. The influence of Hex on biological rhythm was further detected which showed that levels of rhythm regulatory genes and proteins significantly disturbed at four monitored time periods. Based on these results, it was supposed that the underlying mechanism of Hex-induced cognitive dysfunction might through oxidative stress pathway. Our findings could systematically and comprehensively clarify the effects of Hex on nervous system and were helpful for prevention neurological diseases induced by triazole pesticides.

3.
Crit Care Med ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832833

ABSTRACT

OBJECTIVES: This study aimed to systematically assess the methodological quality and key recommendations of the guidelines for the diagnosis and treatment of liver failure (LF), furnishing constructive insights for guideline developers and equipping clinicians with evidence-based information to facilitate informed decision-making. DATA SOURCES: Electronic databases and manual searches from January 2011 to August 2023. STUDY SELECTION: Two reviewers independently screened titles and abstracts, then full texts for eligibility. Fourteen guidelines were included. DATA EXTRACTION AND SYNTHESIS: Two reviewers extracted data and checked by two others. Methodological quality of the guidelines was appraised using the Appraisal of Guidelines for Research and Evaluation II tool. Of the 14 guidelines, only the guidelines established by the Society of Critical Care Medicine and the American College of Gastroenterology (2023) achieved an aggregate quality score exceeding 60%, thereby meriting clinical recommendations. It emerged that there remains ample room for enhancement in the quality of the guidelines, particularly within the domains of stakeholder engagement, rigor, and applicability. Furthermore, an in-depth scrutiny of common recommendations and supporting evidence drawn from the 10 adult LF guidelines unveiled several key issues: controversy exists in the recommendation, the absence of supporting evidence and confusing use of evidence for recommendations, and a preference in evidence selection. CONCLUSIONS: There are high differences in methodological quality and recommendations among LF guidelines. Improving these existing problems and controversies will benefit existing clinical practice and will be an effective way for developers to upgrade the guidelines.

4.
Int Immunopharmacol ; 136: 112316, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38823183

ABSTRACT

The objective of this study was to investigate the neuroimmune mechanisms implicated in the enhancement of gastrointestinal function through the administration of oral DHA. Mast cell-deficient mice (KitW-sh) and C57BL/6 mice were used to establish postoperative ileus (POI) models. To further validate our findings, we conducted noncontact coculture experiments involving dorsal root ganglion (DRG) cells, bone marrow-derived mast cells (BMMCs) and T84 cells. Furthermore, the results obtained from investigations conducted on animals and cells were subsequently validated through clinical trials. The administration of oral DHA had ameliorative effects on intestinal barrier injury and postoperative ileus. In a mechanistic manner, the anti-inflammatory effect of DHA was achieved through the activation of transient receptor potential ankyrin 1 (TRPA1) on DRG cells, resulting in the stabilization of mast cells and increasing interleukin 10 (IL-10) secretion in mast cells. Furthermore, the activation of the pro-repair WNT1-inducible signaling protein 1 (WISP-1) signaling pathways by mast cell-derived IL-10 resulted in an enhancement of the intestinal barrier integrity. The current study demonstrated that the neuroimmune interaction between mast cells and nerves played a crucial role in the process of oral DHA improving the intestinal barrier integrity of POI, which further triggered the activation of CREB/WISP-1 signaling in intestinal mucosal cells.


Subject(s)
Docosahexaenoic Acids , Ileus , Interleukin-10 , Intestinal Mucosa , Mast Cells , Mice, Inbred C57BL , Postoperative Complications , TRPA1 Cation Channel , Animals , Mast Cells/drug effects , Mast Cells/immunology , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/therapeutic use , TRPA1 Cation Channel/metabolism , Mice , Ileus/drug therapy , Ileus/immunology , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Male , Interleukin-10/metabolism , Postoperative Complications/drug therapy , Postoperative Complications/immunology , Ganglia, Spinal/metabolism , Ganglia, Spinal/drug effects , Disease Models, Animal , Coculture Techniques , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use
5.
Innovation (Camb) ; 5(3): 100626, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38699777

ABSTRACT

Pancreatic adenocarcinoma (PDAC) is one of the most deadly cancers, characterized by extremely limited therapeutic options and a poor prognosis, as it is often diagnosed during late disease stages. Innovative and selective treatments are urgently needed, since current therapies have limited efficacy and significant side effects. Through proteomics analysis of extracellular vesicles, we discovered an imbalanced distribution of amino acids secreted by PDAC tumor cells. Our findings revealed that PDAC cells preferentially excrete proteins with certain preferential amino acids, including isoleucine and histidine, via extracellular vesicles. These amino acids are associated with disease progression and can be targeted to elicit selective toxicity to PDAC tumor cells. Both in vitro and in vivo experiments demonstrated that supplementation with these specific amino acids effectively eradicated PDAC cells. Mechanistically, we also identified XRN1 as a potential target for these amino acids. The high selectivity of this treatment method allows for specific targeting of tumor metabolism with very low toxicity to normal tissues. Furthermore, we found this treatment approach is easy-to-administer and with sustained tumor-killing effects. Together, our findings reveal that exocytosed amino acids may serve as therapeutic targets for designing treatments of intractable PDAC and potentially offer alternative treatments for other types of cancers.

6.
Sci Adv ; 10(18): eadn3240, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701205

ABSTRACT

The chiral induced spin selectivity (CISS) effect, in which the structural chirality of a material determines the preference for the transmission of electrons with one spin orientation over that of the other, is emerging as a design principle for creating next-generation spintronic devices. CISS implies that the spin preference of chiral structures persists upon injection of pure spin currents and can act as a spin analyzer without the need for a ferromagnet. Here, we report an anomalous spin current absorption in chiral metal oxides that manifests a colossal anisotropic nonlocal Gilbert damping with a maximum-to-minimum ratio of up to 1000%. A twofold symmetry of the damping is shown to result from differential spin transmission and backscattering that arise from chirality-induced spin splitting along the chiral axis. These studies reveal the rich interplay of chirality and spin dynamics and identify how chiral materials can be implemented to direct the transport of spin current.

7.
ACS Nano ; 18(22): 14218-14230, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38787298

ABSTRACT

Device-level implementation of soft materials for energy conversion and thermal management demands a comprehensive understanding of their thermal conductivity and elastic modulus to mitigate thermo-mechanical challenges and ensure long-term stability. Thermal conductivity and elastic modulus are usually positively correlated in soft materials, such as amorphous macromolecules, which poses a challenge to discover materials that are either soft and thermally conductive or hard and thermally insulative. Here, we show anomalous correlations of thermal conductivity and elastic modulus in two-dimensional (2D) hybrid organic-inorganic perovskites (HOIP) by engineering the molecular interactions between organic cations. By replacing conventional alkyl-alkyl and aryl-aryl type organic interactions with mixed alkyl-aryl interactions, we observe an enhancement in elastic modulus with a reduction in thermal conductivity. This anomalous dependence provides a route to engineer thermal conductivity and elastic modulus independently and a guideline to search for better thermal management materials. Further, introducing chirality into the organic cation induces a molecular packing that leads to the same thermal conductivity and elastic modulus regardless of the composition across all half-chiral 2D HOIPs. This finding provides substantial leeway for further investigations in chiral 2D HOIPs to tune optoelectronic properties without compromising thermal and mechanical stability.

8.
Nat Mater ; 23(6): 782-789, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491147

ABSTRACT

Coupling of spin and charge currents to structural chirality in non-magnetic materials, known as chirality-induced spin selectivity, is promising for application in spintronic devices at room temperature. Although the chirality-induced spin selectivity effect has been identified in various chiral materials, its Onsager reciprocal process, the inverse chirality-induced spin selectivity effect, remains unexplored. Here we report the observation of the inverse chirality-induced spin selectivity effect in chiral assemblies of π-conjugated polymers. Using spin-pumping techniques, the inverse chirality-induced spin selectivity effect enables quantification of the magnitude of the longitudinal spin-to-charge conversion driven by chirality-induced spin selectivity in different chiral polymers. By widely tuning conductivities and supramolecular chiral structures via a printing method, we found a very long spin relaxation time of up to several nanoseconds parallel to the chiral axis. Our demonstration of the inverse chirality-induced spin selectivity effect suggests possibilities for elucidating the puzzling interplay between spin and chirality, and opens a route for spintronic applications using printable chiral assemblies.

9.
Asian J Surg ; 47(1): 1-7, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37331854

ABSTRACT

Many liver surgeons have updated their understanding of the liver in recent years because of detailed studies on the liver anatomy and the rapid advances in laparoscopic liver surgery. Despite newer approaches, concepts and methods, research on the caudate lobe continues to be based on case reports and several persistent challenges concerning caudate lobe surgery that are worth discussing. Based on the literature and the author's experience, this study considers and addresses the challenges associated with caudate lobectomy encountered by most liver surgeons. We searched PubMed for relevant articles in English for 'caudate lobe', 'cholangiocellular carcinoma', 'laparoscopic caudate resection', 'right-side boundary of the caudate lobe' and 'assessment of hepatic functional reserve' published up to May 2022. This study reviewed the anatomical history of the caudate lobe, focusing on the challenges associated with caudate lobe-related surgical resection. Due to the unique anatomical position of the caudate lobe, surgical strategy for caudate lobe resection is particularly important, and the technical requirements for hepatobiliary surgeons are also extremely strict. Therefore, understanding the anatomical history of the caudate lobe and discussing the challenges associated with caudate lobectomy is essential.


Subject(s)
Bile Duct Neoplasms , Liver Neoplasms , Humans , Hepatectomy/methods , Liver Neoplasms/surgery , Bile Ducts, Intrahepatic , Bile Duct Neoplasms/surgery
10.
Pestic Biochem Physiol ; 197: 105646, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38072521

ABSTRACT

Hexaconazole (Hex) is a widely used and high frequency detected triazole fungicide in agricultural products and environment which may pose potential toxicity to the nontargeted organisms. Hex had been reported to affect lipid homeostasis while the mechanism was undefined. This study aims to explore the characteristic lipidomic profiles and clarify the underlying signaling pathways of Hex-induced lipid metabolism disorder in rat liver. The results showed that sub-chronic exposure to environmental related concentrations of Hex caused histopathological changes, oxidative stress, fat accumulation, lipid biochemical parameter increase in rats. Moreover, the untargeted lipidomic analysis showed that the levels of TAG, PC, and PE and the pathway of glycerophospholipid metabolism were heavily altered by Hex. We further analyzed the lipid metabolism related genes and proteins which revealed that Hex exposure increased amount of lipogenesis by activating oxidative stress-mediated mTOR-PPAR-γ/SREBP1 signaling pathways. The imbalance of lipid homeostasis induced by Hex exposure might further lead to obesity, cardiovascular diseases (CVDs), and hyperlipidemia. Our results provided systematic and comprehensive evidence for the mechanism of Hex-induced lipid metabolism disorder at environmental concentrations and supplied a certain basis for its health risks assessment.


Subject(s)
Lipid Metabolism Disorders , Lipid Metabolism , Rats , Animals , Peroxisome Proliferator-Activated Receptors/metabolism , Oxidative Stress , Triazoles/pharmacology , Signal Transduction , TOR Serine-Threonine Kinases , Lipids , Lipid Metabolism Disorders/metabolism , Lipid Metabolism Disorders/pathology , Liver/metabolism
11.
J Agric Food Chem ; 71(50): 20105-20117, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38073108

ABSTRACT

Nobiletin (NOB), a flavonoid with significant antioxidant potential, holds promise for treating nonalcoholic fatty liver disease (NAFLD). In this work, we aim to assess the effects and investigate the molecular mechanisms of NOB on NAFLD. After using a methionine choline-deficient diet to induce C57BL/6J mice, as well as oleic acid to induce HepG2 and L02 cells, we administered NOB as an intervention. The results indicated that the NOB significantly ameliorated lipid deposition, oxidative stress, and inflammation in NAFLD in both models. Its mechanism may involve the Nrf2, SREBP-1c, and NF-κB signaling pathways. Furthermore, Nrf2 is not only a direct target for NOB to improve oxidative damage but also indirectly involved in lipid-lowering and anti-inflammatory processes in NAFLD. By inhibiting Nrf2, we found that the regulatory role of Nrf2 in lipid metabolism is not related to SREBP-1c but is closely associated with NF-κB in terms of inflammation. Our results suggest that Nrf2 is one of the most critical targets for NOB against NAFLD in multiple aspects.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Mice, Inbred C57BL , Liver/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Oxidative Stress , Lipid Metabolism , Lipids , Diet, High-Fat
12.
Phys Rev Lett ; 131(18): 186703, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37977650

ABSTRACT

The understanding and manipulation of anisotropic Gilbert damping is crucial for both fundamental research and versatile engineering and optimization. Although several works on anisotropic damping have been reported, no direct relationship between the band structure and anisotropic damping was established. Here, we observed an anisotropic damping in Fe/GeTe manipulated by the symmetric band structures of GeTe via angle-resolved photoemission spectroscopy. Moreover, the anisotropic damping can be modified by the symmetry of band structures. Our Letter provides insightful understandings of the anisotropic Gilbert damping in ferromagnets interfaced with Rashba semiconductors and suggests the possibility of manipulating the Gilbert damping by band engineering.

13.
Nanoscale ; 15(42): 17124-17137, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37850476

ABSTRACT

Graphene-reinforced conjugated polymer (CP) nanocomposites are attractive for flexible and electronic devices, but their mechanical properties have been less explored at a fundamental level. Here, we present a predictive multiscale modeling framework for graphene-reinforced poly(3-alkylthiophene) (P3AT) nanocomposites via atomistically informed coarse-grained molecular dynamics simulations to investigate temperature-dependent thermomechanical properties at a molecular level. Our results reveal reduced graphene dispersion with increasing graphene loading. Nanocomposites with shorter P3AT side chains, lower temperatures, and higher graphene content exhibit stronger mechanical responses, which correlates with polymer dynamics. The elastic modulus increases linearly with the graphene content, which slightly deviates from the "Halpin-Tsai" micromechanical model prediction. Local stiffness analysis shows that graphene possesses the highest stiffness, followed by the P3AT backbone and side chains. Deformation-induced stronger chain alignment of the P3AT backbone compared to graphene may further promote conductive behavior. Our findings provide insights into the dynamical heterogeneity of nanocomposites, paving the way for understanding and predicting their thermomechanical properties.

14.
Surg Laparosc Endosc Percutan Tech ; 33(6): 673-681, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37750709

ABSTRACT

BACKGROUND: To systematically evaluate the methodological quality of the current up-to-date guidelines pertaining to choledocholithiasis, we conducted a comprehensive analysis of key recommendations and corresponding evidence, focusing on the heterogeneity among these guidelines. METHOD: Systematic searches across various databases were performed to identify the latest guidelines. The identified guidelines, which met the inclusion criteria, underwent evaluation using the Appraisal of Guidelines for Research and Evaluation II (AGREE II) tool. The key recommendations and evidence from the included guidelines were extracted and reclassified using the Oxford Centre for Evidence-Based Medicine (OCEBM) grading system, and the obtained results were analyzed. RESULTS: Nine guidelines related to choledocholithiasis were included in this study, out of which 4 achieved an overall standardized score of more than 60%, indicating their suitability for recommendation. Upon closer examination of the main recommendations within these guidelines, we discovered significant discrepancies concerning the utilization of similar treatment techniques for different diseases or different treatment methods under comparable conditions, and discrepancies in the recommended treatment duration. High-quality research evidence was lacking, and some recommendations either failed to provide supporting evidence or cited inappropriate and low-level evidence. CONCLUSION: The quality of guidelines pertaining to choledocholithiasis is uneven. Recommendations for the treatment of choledocholithiasis demonstrate considerable disparities among the guidelines, particularly regarding the utilization of endoscopic retrograde cholangiopancreatography as a treatment method and the management approaches for difficult stone cases. Improvements by guideline developers for these factors contributing to the heterogeneity would be a reasonable approach to further update the guidelines for cholangiolithiasis.


Subject(s)
Choledocholithiasis , Practice Guidelines as Topic , Humans , Choledocholithiasis/diagnosis , Choledocholithiasis/surgery , Evidence-Based Medicine , Practice Guidelines as Topic/standards
15.
Molecules ; 28(16)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37630365

ABSTRACT

In this study, the residue levels of chiral pesticide hexaconazole during kiwifruit juice processing (peeling, homogenization, and sterilization) were investigated by using high-performance liquid chromatography (HPLC), and the dietary risk during these processes was also assessed. Hexaconazole was applied at dosages of 173.33 and 346.66 mg/L (recommended and double recommended dosage) in kiwifruit. In the peeling process, 87.7% to 89.2% of the residues were decreased after peeling. Levels of hexaconazole residues in homogenization and sterilization processes further increased from 0.49% to 24.3% and from 0.2% to 3.0%, respectively. Processing factors (PFs) for (+)- and (-)-hexaconazole after peeling, homogenization, and sterilization were 0.12, 0.88, 0.99 for low-dose treatment and 0.12, 0.87, 0.99 for high-dose treatment, respectively. The enantioselectivity of hexaconazole during these procedures was evaluated by enantiomeric fractions (EFs) values, which were around 0.5 throughout all the procedures, indicating that hexaconazole enantiomers had similar dissipation behaviors during kiwifruit juice processing. The RQc of hexaconazole in pre-peeling samples was significantly greater than 100% under two dosages, while the peeling process can notably decrease the values to an acceptable level. The results of this study could provide guidance for agriculture applications and kiwi commodity production to decrease the risk of hexaconazole residue.


Subject(s)
Actinidia , Pesticides , Fruit , Triazoles , Agriculture
16.
Anal Chem ; 95(27): 10353-10361, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37339258

ABSTRACT

Pancreatic cancer patients predominantly present with advanced disease at diagnosis, contributing to its high mortality. A noninvasive, fast screening method to detect this disease is an unmet need. Tumor-derived extracellular vesicles (tdEVs) bearing information from parental cells have emerged as a promising cancer diagnostic biomarker. However, most tdEV-based assays have impractical sample volumes and time-consuming, complex, and costly techniques. To overcome these limitations, we developed a novel diagnostic method for pancreatic cancer screening. Our approach utilizes the mitochondrial DNA to nuclear DNA ratio of EVs as a collective cell-specific characteristic. We introduce EvIPqPCR, a fast method that combines immunoprecipitation (IP) and qPCR quantification to detect tumor-derived EVs directly from serum. Importantly, our method employs DNA isolation-free and duplexing probes for qPCR, saving at least 3 h. This technique has the potential to serve as a translational assay for cancer screening with a weak correlation to prognosis biomarkers and sufficient discriminatory power among healthy controls, pancreatitis, and pancreatic cancer cases.


Subject(s)
Extracellular Vesicles , Pancreatic Neoplasms , Humans , Cell Line, Tumor , Pancreatic Neoplasms/diagnosis , Biomarkers, Tumor , Pancreatic Neoplasms
17.
PeerJ ; 11: e15463, 2023.
Article in English | MEDLINE | ID: mdl-37273533

ABSTRACT

Police officers in Thailand have an increased risk of heart disease, stroke, and type 2 diabetes, possibly due to a high prevalence of hypertension and metabolic syndrome (MetS). In this study, the researchers aimed to understand the relationship between surrogate markers of insulin resistance (IR) and the prevalence of MetS and hypertension in Thai police officers. The study included 7,852 police officer participants, of which 91.8% were men with an average age of 48.56 years. The prevalence of hypertension and MetS were found to be 51.1% and 30.8%, respectively, and the participants with MetS and hypertension were older compared to the regular group. The study looked at eight IR indices, including markers such as atherogenic index of plasma (AIP), lipid accumulation product (LAP), metabolic score for insulin resistance (METS-IR), triglyceride glucose (TyG) index, TyG index with body mass index (TyG-BMI), TyG index with waist circumference (TyG-WC), the ratio of triglycerides to high-density lipoprotein cholesterol ratio (TG/HDL-c), and visceral obesity index (VAI). These indices were found to be positively correlated with waist circumference, systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting plasma glucose (FPG), and triglycerides (TG), while being negatively correlated with high-density lipoprotein cholesterol (HDL-c). In addition, the multiple regression analysis showed that higher quartiles of all IR indices were significantly associated with increased risks of MetS and hypertension. Interestingly, the IR indices were more accurate in predicting MetS (ranges 0.848 to 0.892) than traditional obesity indices, with the AUC difference at p < 0.001. Among the IR indices, TyG-WC performed the best in predicting MetS (AUC value 0.892 and Youden index 0.620). At the same time, TyG-BMI had the highest accuracy in predicting hypertension (AUC value of 0.659 and Youden index of 0.236). In addition, this study found that when two markers were combined for diagnosing metabolic syndrome, a significantly improved predictive value for disease risk was observed, as evidenced by higher AUC and Yoden index. Moreover, the IR indices were found to have higher predictive power for MetS and hypertension in younger police personnel (age < 48 years) than older personnel. In conclusion, this study highlights the importance of reducing cardiovascular disease risks among law enforcement personnel as a strategic goal to improve their health and wellness. The findings suggest that IR indices may be valuable tools in predicting MetS and hypertension in law enforcement personnel and could potentially aid in the early identification and prevention of law enforcement personnel health conditions.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Insulin Resistance , Metabolic Syndrome , Male , Humans , Middle Aged , Female , Metabolic Syndrome/diagnosis , Police , Southeast Asian People , Thailand/epidemiology , Adiposity , Blood Glucose/metabolism , Hypertension/diagnosis , Glucose , Triglycerides , Lipoproteins, HDL/metabolism , Cholesterol
18.
iScience ; 26(6): 106831, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37250791

ABSTRACT

This study aims to identify biomarkers of intestinal repair and provide potential therapeutic clues for improving functional recovery and prognostic performance after intestinal inflammation or injury. Here, we conducted a large-scale screening of multiple transcriptomic and scRNA-seq datasets of patients with inflammatory bowel disease (IBD), and identified 10 marker genes that potentially contribute to intestinal barrier repairing: AQP8, SULT1A1, HSD17B2, PADI2, SLC26A2, SELENBP1, FAM162A, TNNC2, ACADS, and TST. Analysis of a published scRNA-seq dataset revealed that expression of these healing markers were specific to absorptive cell types in intestinal epithelium. Furthermore, we conducted a clinical study where 11 patients underwent ileum resection demonstrating that upregulation of post-operative AQP8 and SULT1A1 expression were associated with improved recovery of bowel functions after surgery-induced intestinal injury, making them confident biomarkers of intestinal healing as well as potential prognostic markers and therapeutic targets for patients with impaired intestinal barrier functions.

19.
Adv Sci (Weinh) ; 10(19): e2301273, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37092575

ABSTRACT

Nanosized perovskite ferroelectrics are widely employed in several electromechanical, photonics, and thermoelectric applications. Scaling of ferroelectric materials entails a severe reduction in the lattice (phonon) thermal conductivity, particularly at sub-100 nm length scales. Such thermal conductivity reduction can be accurately predicted using the information of phonon mean free path (MFP) distribution. The current understanding of phonon MFP distribution in perovskite ferroelectrics is still inconclusive despite the critical thermal management implications. Here, high-quality single-crystalline barium titanate (BTO) thin films, a representative perovskite ferroelectric material, are grown at several thicknesses. Using experimental thermal conductivity measurements and first-principles based modeling (including four-phonon scattering), the phonon MFP distribution is determined in BTO. The simulation results agree with the measured thickness-dependent thermal conductivity. The results show that the phonons with sub-100 nm MFP dominate the thermal transport in BTO, and phonons with MFP exceeding 10 nm contribute ≈35% to the total thermal conductivity, in significant contrast to previously published experimental results. The experimentally validated phonon MFP distribution is consistent with the theoretical predictions of other complex crystals with strong anharmonicity. This work paves the way for thermal management in nanostructured and ferroelectric-domain-engineered systems for oxide perovskite-based functional materials.

20.
Nat Commun ; 14(1): 1834, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37005408

ABSTRACT

Hybrid magnonic systems are a newcomer for pursuing coherent information processing owing to their rich quantum engineering functionalities. One prototypical example is hybrid magnonics in antiferromagnets with an easy-plane anisotropy that resembles a quantum-mechanically mixed two-level spin system through the coupling of acoustic and optical magnons. Generally, the coupling between these orthogonal modes is forbidden due to their opposite parity. Here we show that the Dzyaloshinskii-Moriya-Interaction (DMI), a chiral antisymmetric interaction that occurs in magnetic systems with low symmetry, can lift this restriction. We report that layered hybrid perovskite antiferromagnets with an interlayer DMI can lead to a strong intrinsic magnon-magnon coupling strength up to 0.24 GHz, which is four times greater than the dissipation rates of the acoustic/optical modes. Our work shows that the DMI in these hybrid antiferromagnets holds promise for leveraging magnon-magnon coupling by harnessing symmetry breaking in a highly tunable, solution-processable layered magnetic platform.

SELECTION OF CITATIONS
SEARCH DETAIL