Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 14(1): 7152, 2024 03 26.
Article in English | MEDLINE | ID: mdl-38531966

ABSTRACT

Constipation is a major health problem worldwide that requires effective and safe treatment options. Increasing evidence indicates that disturbances in gut microbiota may be a risk factor for constipation. Administration of lacidophilin tablets shows promising therapeutic potential in the treatment of inflammatory bowel disease owing to their immunomodulatory properties and regulation of the gut microbiota. The focus of this study was on investigating the ability of lacidophilin tablets to relieve constipation by modulating the gut microbiome. Rats with loperamide hydrochloride induced constipation were treated with lacidophilin tablets via intragastric administration for ten days. The laxative effect of lacidophilin tablets was then evaluated by investigating the regulation of intestinal microflora and the possible underlying molecular mechanism. Our results reveal that treatment with lacidophilin tablets increased the intestinal advancement rate, fecal moisture content, and colonic AQP3 protein expression. It also improved colonic microflora structure in the colonic contents of model rats mainly by increasing Akkermansia muciniphila and decreasing Clostridium_sensu_stricto_1. Transcriptome analysis indicated that treatment with lacidophilin tablets maintains the immune response in the intestine and promotes recovery of the intestinal mechanical barrier in the constipation model. Our study shows that lacidophilin tablets improve constipation, possibly by promoting Akkermansia colonization and by modulating the intestinal immune response.


Subject(s)
Gastrointestinal Microbiome , Rats , Animals , Akkermansia , Constipation/drug therapy , Intestines , Loperamide
2.
Stem Cell Res Ther ; 12(1): 175, 2021 03 12.
Article in English | MEDLINE | ID: mdl-33712030

ABSTRACT

BACKGROUND: Cellular therapy based on mesenchymal stem cells (MSCs) is a promising novel therapeutic strategy for the osteonecrosis of the femoral head (ONFH), which is gradually becoming popular, particularly for early-stage ONFH. Nonetheless, the MSC-based therapy is challenging due to certain limitations, such as limited self-renewal capability of cells, availability of donor MSCs, and the costs involved in donor screening. As an alternative approach, MSCs derived from induced pluripotent stem cells (iPSCs), which may lead to further standardized-cell preparations. METHODS: In the present study, the bone marrow samples of patients with ONFH (n = 16) and patients with the fracture of the femoral neck (n = 12) were obtained during operation. The bone marrow-derived MSCs (BMSCs) were isolated by density gradient centrifugation. BMSCs of ONFH patients (ONFH-BMSCs) were reprogrammed to iPSCs, following which the iPSCs were differentiated into MSCs (iPSC-MSCs). Forty adult male rats were randomly divided into following groups (n = 10 per group): (a) normal control group, (b) methylprednisolone (MPS) group, (c) MPS + BMSCs treated group, and (d) MPS + iPSC-MSC-treated group. Eight weeks after the establishment of the ONFH model, rats in BMSC-treated group and iPSC-MSC-treated group were implanted with BMSCs and iPSC-MSCs through intrabone marrow injection. Bone repair of the femoral head necrosis area was analyzed after MSC transplantation. RESULTS: The morphology, immunophenotype, in vitro differentiation potential, and DNA methylation patterns of iPSC-MSCs were similar to those of normal BMSCs, while the proliferation of iPSC-MSCs was higher and no tumorigenic ability was exhibited. Furthermore, comparing the effectiveness of iPSC-MSCs and the normal BMSCs in an ONFH rat model revealed that the iPSC-MSCs was equivalent to normal BMSCs in preventing bone loss and promoting bone repair in the necrosis region of the femoral head. CONCLUSION: Reprogramming can reverse the abnormal proliferation, differentiation, and DNA methylation patterns of ONFH-BMSCs. Transplantation of iPSC-MSCs could effectively promote bone repair and angiogenesis in the necrosis area of the femoral head.


Subject(s)
Femur Head Necrosis , Induced Pluripotent Stem Cells , Mesenchymal Stem Cells , Animals , Femur Head , Femur Head Necrosis/chemically induced , Femur Head Necrosis/therapy , Humans , Male , Osteogenesis , Rats , Steroids
SELECTION OF CITATIONS
SEARCH DETAIL
...