Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Article in English | MEDLINE | ID: mdl-39024013

ABSTRACT

Targeting liver cancer stem cells (LCSCs) is a promising strategy for hepatocellular carcinoma (HCC) therapy. Target selection and corresponding inhibitor screening are of vital importance for eliminating the stemness of LCSCs. Peptide-based agents are hopeful but have long been hindered for in vivo application. Herein, we selected a clinically significant target MUC13 and screened out a suitable peptide for preparation of an albumin-based MUC13 peptide nanomedicine, P3@HSA, which suppressed liver cancer stem cells via JNK-ERK signaling pathway-mediated autophagy inhibition. The selected target MUC13 was highly expressed in LCSCs and associated with the prognosis of liver cancer patients. Encouraged by this observation, we screened the corresponding peptide-based inhibitor P3 for further evaluation. P3 could interact with albumin through the intrinsic hydrophobic force and formed the nanomedicine P3@HSA. The prepared nanomedicine could inhibit LCSCs through JNK-ERK signaling pathway-mediated autophagy inhibition and exert potent antitumor effect both in vitro and in vivo. Together, this study provides a promising peptide-based nanomedicine for high-performance HCC treatment.

2.
J Nanobiotechnology ; 22(1): 329, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858736

ABSTRACT

BACKGROUND: Cancer stem cells (CSCs) play a vital role in the occurrence, maintenance, and recurrence of solid tumors. Although, miR-145-5p can inhibit CSCs survival, poor understanding of the underlying mechanisms hamperes further therapeutic optimization for patients. Lentivirus with remarkable transduction efficiency is the most commonly used RNA carrier in research, but has shown limited tumor-targeting capability. METHODS: We have applied liposome to decorate lentivirus surface thereby yielding liposome-lentivirus hybrid-based carriers, termed miR-145-5p-lentivirus nanoliposome (MRL145), and systematically analyzed their potential therapeutic effects on liver CSCs (LCSCs). RESULTS: MRL145 exhibited high delivery efficiency and potent anti-tumor efficacy under in vitro and in vivo. Mechanistically, the overexpressed miR-145-5p can significantly suppress the self-renewal, migration, and invasion abilities of LCSCs by targeting Collagen Type IV Alpha 3 Chain (COL4A3). Importantly, COL4A3 can promote phosphorylating GSK-3ß at ser 9 (p-GSK-3ß S9) to inactivate GSK3ß, and facilitate translocation of ß-catenin into the nucleus to activate the Wnt/ß-catenin pathway, thereby promoting self-renewal, migration, and invasion of LCSCs. Interestingly, COL4A3 could attenuate the cellular autophagy through modulating GSK3ß/Gli3/VMP1 axis to promote self-renewal, migration, and invasion of LCSCs. CONCLUSIONS: These findings provide new insights in mode of action of miR-145-5p in LCSCs therapy and indicates that liposome-virus hybrid carriers hold great promise in miRNA delivery.


Subject(s)
Lentivirus , Liposomes , MicroRNAs , Neoplastic Stem Cells , MicroRNAs/genetics , MicroRNAs/metabolism , Liposomes/chemistry , Humans , Animals , Mice , Lentivirus/genetics , Cell Line, Tumor , Neoplastic Stem Cells/metabolism , Mice, Nude , Liver Neoplasms/therapy , Mice, Inbred BALB C , Cell Movement , Glycogen Synthase Kinase 3 beta/metabolism , beta Catenin/metabolism , Wnt Signaling Pathway
3.
Food Funct ; 15(2): 689-703, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38108607

ABSTRACT

The influence of salt consumption on physiological processes, especially blood pressure (BP), metabolism, and cognition, remains a topical concern. While guidelines endorse reduced salt diets, there are gaps in understanding the age-specific implications and challenges in adherence. The present study delved into the differential effects of salt intake on young adult and aged male rats over a 12-week period, using control, low-, and high-salt diets. Key metrics, such as BP, cognition, and general parameters, were monitored. Our findings revealed significant age-dependent effects of salt intake on survival rates, body weight, blood sodium, blood glucose, blood lipids, BP, heart rates, and cognition. Notably, young adult rats did not show significant sodium level changes on a high-salt diet, whereas aged rats experienced increased sodium levels even on a normal salt diet. Blood glucose levels decreased significantly in aged rats on a high-salt diet but remained stable in young adults. Aged rats had the highest survival rates on low-salt diets. Low-salt diets led to reduced BP in both age groups, more significantly in young adults. Young adult rats displayed increased BP variability on both high- and low-salt diets, while a decrease in BP variability was exclusive to aged rats on a low-salt diet. There were significant differences across age groups in short-term memory, but not in long-term memory. The study provides a nuanced understanding of the age-dependent physiological effects of salt intake, suggesting the necessity of age-specific guidelines for public health.


Subject(s)
Hypertension , Sodium Chloride, Dietary , Rats , Male , Animals , Blood Pressure , Diet, Sodium-Restricted , Sodium Chloride , Sodium , Cognition
4.
J Hypertens ; 41(6): 888-905, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37016905

ABSTRACT

Dementia is the most common neurodegenerative disease in the aging population. Emerging evidence indicates that blood pressure (BP) variability is correlated with cognitive impairment and dementia independent of mean BP levels. The state-of-the-art review summarizes the latest evidence regarding the impact of BP variability on cognition in cognitively intact populations, patients with mild cognitive impairment, and different dementia types, focusing on the important confounding factors and new advances. This review also summarizes the potential mechanisms underlying the relationship between BP variability and cognitive impairment, and dementia, briefly discussing sex differences in the relationship. At last, current limitations and future perspectives are discussed to optimize BP management in preventing cognitive impairment and dementia.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Humans , Male , Female , Aged , Blood Pressure/physiology , Cognition/physiology
5.
Adv Healthc Mater ; 12(12): e2202424, 2023 05.
Article in English | MEDLINE | ID: mdl-36640265

ABSTRACT

While calcium-overload-mediated therapy (COMT) is a promising but largely untapped therapeutic strategy, combinatory therapy greatly boosts treatment outcomes with integrated merits of different therapies. Herein, a BPQD@CaO2 -PEG-GPC3Ab nanoplatform is formulated by integrating calcium peroxide (CaO2 ) and black phosphorus quantum dot (BPQD, photosensitizer) with active-targeting glypican-3 antibody (GPC3Ab), for combinatory photodynamic therapy (PDT) and COMT in response to acidic pH and near-infrared (NIR) light, wherein CaO2 serves as the reservoir of calcium ions (Ca2+ ) and hydrogen peroxide (H2 O2 ). Navigated by GPC3Ab to tumor cells at acidic pH, the nanoparticle disassembles to CaO2 and BPQD; CaO2 produces COMT Ca2+ and H2 O2 , while H2 O2 makes oxygen (O2 ) to promote PDT; under NIR irradiation BPQD facilitates not only the conversion of O2 to singlet oxygen (1 O2 ) for PDT, but also moderate hyperthermia to accelerate NP dissociation to CaO2 and BPQD, and conversions of CaO2 to Ca2+ and H2 O2 , and H2 O2 to O2 , to enhance both COMT and PDT. After supplementary ionomycin treatment to induce intracellular Ca2+ bursts, the multimodal therapeutics strikingly induce hepatocellular carcinoma apoptosis, likely through the activation of the calpains and caspases 12, 9, and 3, up-regulation of Bax and down-regulation of Bcl-2 proteins. This nanoplatform enables a mutually-amplifying and self-reinforcing synergistic therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Photochemotherapy , Humans , Calcium , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Oxygen , Hydrogen Peroxide , Cell Line, Tumor
6.
Lipids Health Dis ; 22(1): 12, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36698175

ABSTRACT

BACKGROUND: The adipokine chemerin regulates adipogenesis and the metabolic function of both adipocytes and liver. Chemerin is elevated in preeclamptic women, and overexpression of chemerin in placental trophoblasts induces preeclampsia-like symptoms in mice. Preeclampsia is known to be accompanied by dyslipidemia, albeit via unknown mechanisms. Here, we hypothesized that chemerin might be a contributor to dyslipidemia. METHODS: Serum lipid fractions as well as lipid-related genes and proteins were determined in pregnant mice with chemerin overexpression in placental trophoblasts and chemerin-overexpressing human trophoblasts. In addition, a phospholipidomics analysis was performed in chemerin-overexpressing trophoblasts. RESULTS: Overexpression of chemerin in trophoblasts increased the circulating and placental levels of cholesterol rather than triglycerides. It also increased the serum levels of lysophosphatidic acid, high-density lipoprotein cholesterol (HDL-C), and and low-density lipoprotein cholesterol (LDL-C), and induced placental lipid accumulation. Mechanistically, chemerin upregulated the levels of peroxisome proliferator-activated receptor g, fatty acid-binding protein 4, adiponectin, sterol regulatory element-binding protein 1 and 2, and the ratio of phosphorylated extracellular signal-regulated protein kinase (ERK)1/2 / total ERK1/2 in the placenta of mice and human trophoblasts. Furthermore, chemerin overexpression in human trophoblasts increased the production of lysophospholipids and phospholipids, particularly lysophosphatidylethanolamine. CONCLUSIONS: Overexpression of placental chemerin production disrupts trophoblast lipid metabolism, thereby potentially contributing to dyslipidemia in preeclampsia.


Subject(s)
Chemokines , Dyslipidemias , Pre-Eclampsia , Female , Humans , Pregnancy , Adipokines/metabolism , Cholesterol/metabolism , Dyslipidemias/genetics , Dyslipidemias/metabolism , Placenta/metabolism , Triglycerides/metabolism , Trophoblasts/metabolism , Animals , Mice , Chemokines/genetics
7.
Int J Mol Sci ; 23(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36430694

ABSTRACT

Hepatocellular carcinoma (HCC) is a major subtype of primary liver cancer with a high mortality rate. Pyroptosis and autophagy are crucial processes in the pathophysiology of HCC. Searching for efficient drugs targeting pyroptosis and autophagy with lower toxicity is useful for HCC treatment. Mallotucin D (MLD), a clerodane diterpenoid from Croton crassifolius, has not been previously reported for its anticancer effects in HCC. This study aims to evaluate the inhibitory effects of MLD in HCC and explore the underlying mechanism. We found that the cell proliferation, DNA synthesis, and colony formation of HepG2 cells and the angiogenesis of HUVECs were all greatly inhibited by MLD. MLD caused mitochondrial damage and decreased the TOM20 expression and mitochondrial membrane potential, inducing ROS overproduction. Moreover, MLD promoted the cytochrome C from mitochondria into cytoplasm, leading to cleavage of caspase-9 and caspase-3 inducing GSDMD-related pyroptosis. In addition, we revealed that MLD activated mitophagy by inhibiting the PI3K/AKT/mTOR pathway. Using the ROS-scavenging reagent NAC, the activation effects of MLD on pyroptosis- and autophagy-related pathways were all inhibited. In the HepG2 xenograft model, MLD effectively inhibited tumor growth without detectable toxicities in normal tissue. In conclusion, MLD could be developed as a candidate drug for HCC treatment by inducing mitophagy and pyroptosis via promoting mitochondrial-related ROS production.


Subject(s)
Autophagic Cell Death , Carcinoma, Hepatocellular , Croton , Diterpenes, Clerodane , Liver Neoplasms , Humans , Autophagic Cell Death/drug effects , Carcinoma, Hepatocellular/metabolism , Cell Proliferation/drug effects , Croton/chemistry , Diterpenes, Clerodane/pharmacology , Hep G2 Cells/drug effects , Hep G2 Cells/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Pyroptosis/drug effects , Reactive Oxygen Species/metabolism
8.
Clin Sci (Lond) ; 136(4): 257-272, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35103285

ABSTRACT

Maternal circulating levels of the adipokine chemerin are elevated in preeclampsia, but its origin and contribution to preeclampsia remain unknown. We therefore studied (1) placental chemerin expression and release in human pregnancy, and (2) the consequences of chemerin overexpression via lentivirus-mediated trophoblast-specific gene manipulation in both mice and immortalized human trophoblasts. Placental chemerin expression and release were increased in women with preeclampsia, and their circulating chemerin levels correlated positively with the soluble Fms-like tyrosine kinase-1 (sFlt-1)/placental growth factor (PlGF) ratio, a well-known biomarker of preeclampsia severity. Placental trophoblast chemerin overexpression in mice induced a preeclampsia-like syndrome, involving hypertension, proteinuria, and endotheliosis, combined with diminished trophoblast invasion, a disorganized labyrinth layer, and up-regulation of sFlt-1 and the inflammation markers nuclear factor-κB (NFκB), tumor necrosis factor (TNF)-α, and interleukin (IL)-1ß. It also led to embryo resorption, while maternal serum chemerin levels correlated negatively with fetal weight in mice. Chemerin overexpression in human trophoblasts up-regulated sFlt-1, reduced vascular endothelial factor-A, and inhibited migration and invasion, as well as tube formation during co-culture with human umbilical vein endothelial cells (HUVECs). The chemokine-like receptor 1 (CMKLR1) antagonist α-NETA prevented the latter phenomenon, although it did not reverse the chemerin-induced down-regulation of the phosphoinositide 3-kinase/Akt pathway. In conclusion, up-regulation of placental chemerin synthesis disturbs normal placental development via its CMKLR1 receptor, thereby contributing to fetal growth restriction/resorption and the development of preeclampsia. Chemerin might be a novel biomarker of preeclampsia, and inhibition of the chemerin/CMKLR1 pathway is a promising novel therapeutic strategy to treat preeclampsia.


Subject(s)
Chemokines/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Pre-Eclampsia/etiology , Trophoblasts/pathology , Animals , Cell Line , Chemokines/genetics , Female , Human Umbilical Vein Endothelial Cells , Humans , Intercellular Signaling Peptides and Proteins/genetics , Mice , Placenta/metabolism , Placenta/pathology , Placenta Growth Factor/metabolism , Pregnancy , Pregnancy Outcome , Trophoblasts/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism
9.
Int J Mol Sci ; 23(2)2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35055127

ABSTRACT

Pregnancy loss (PL) is one of the common complications that women can experience during pregnancy, with an occurrence rate of 1 to 5%. The potential causes of pregnancy loss are unclear, with no effective treatment modalities being available. It has been previously reported that the level of miR-125b was significantly increased in placentas of PL patients. However, the role of miR-125b in the development of PL still remains unknown. In the current study, an miR-125b placenta-specific over-expression model was constructed by lentiviral transfecting zona-free mouse embryos followed by embryo transfer. On gestation day 15, it was observed that the placenta was significantly smaller in the miR-125b placenta-specific overexpression group than the control group. Additionally, the abortion rate of the miR-125b placenta-specific overexpression group was markedly higher than in the control group. The blood vessel diameter was larger in the miR-125b-overexpressing specific placenta. In addition, miR-125b-overexpressing HTR8 and JEG3 cell lines were also generated to analyze the migration and invasion ability of trophoblasts. The results showed that miR-125b overexpression significantly suppressed the migration and invasion ability of HTR8 and JEG3 cells. Overall, our results demonstrated that miR-125b can affect embryo implantation through modulating placenta angiogenesis and trophoblast cell invasion capacity that can lead to PL.


Subject(s)
Abortion, Spontaneous/genetics , MicroRNAs/genetics , Placenta/chemistry , Up-Regulation , Animals , Case-Control Studies , Cell Line , Disease Models, Animal , Female , Humans , Mice , Organ Specificity , Pregnancy
10.
Front Physiol ; 11: 1078, 2020.
Article in English | MEDLINE | ID: mdl-32973568

ABSTRACT

Parasitic infection improves metabolic homeostasis in "western diet"-induced obesity through the regulation of adipogenesis. However, the underlying mechanism is not yet fully understood. Using microarray analysis, this study investigated the long non-coding RNA (lncRNA) and messenger RNA (mRNA) profiles of subcutaneous adipose tissues from mice infected with Echinococcus granulosus protoscoleces. A total of 1052 mRNA (541 upregulated, 511 downregulated) and 220 lncRNA (126 upregulated, 94 downregulated) transcripts were differentially expressed (fold change ≥2, P < 0.05) in the infected subcutaneous adipose tissues. When compared with the control group, the infected mice showed a decrease in adipose tissue mass and a reduction in adipocyte size. Indirect calorimetry revealed the change in the energy metabolism after infection, characterized by a lower CO2 production and O2 consumption, a sharp decline in carbohydrate oxidation, and a slight increase in fat oxidation. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that the parasitic infection reprogrammed a complex metabolic network. Notably, "lipoxygenase" and "arginine and proline metabolism" pathways were significantly upregulated while "glycolysis," "tricarboxylic acid cycle," "de novo lipogenesis," and "lipid droplet" pathways were dramatically downregulated. In addition, several key lncRNAs were associated with insulin resistance and adipocyte differentiation. Overall, the present study suggested that E. granulosus infection could enhance lipolysis. Thus, our findings provide novel insights into parasite-mediated metabolic homeostasis, and into the mechanism of hypertrophic adipocytes in obesity.

11.
Immunol Res ; 68(1): 28-38, 2020 02.
Article in English | MEDLINE | ID: mdl-32248343

ABSTRACT

This study aimed to investigate whether the classic hepatoprotective drug polyene phosphatidylcholine (PPC) regulates macrophage polarization and explores the potential role of TLR-2 in this process. In RAW264.7 macrophages and murine bone marrow-derived macrophages (BMDMs) stimulated by lipopolysaccharide (LPS), PPC significantly inhibited the production of IL-6, TNF-α, and the mRNA expression of M1-type macrophage markers. Consistently, PPC reduced the mRNA expression of several key enzymes in the pathways of glycolysis and lipid synthesis while increasing the expression of key enzymes associated with lipid oxidation. Moreover, blocking the glycolytic pathway using 2-deoxy-D-glucose (2-DG) significantly enhanced the anti-inflammatory effect of PPC. However, inhibition of lipid oxidation using GW9662 (an inhibitor of PPAR-γ) and GW6471 (an inhibitor of PPAR-α) abolished the anti-inflammatory effect of PPC. Interestingly, TLR-2 expression in macrophages was significantly downregulated after exposure to PPC. Moreover, pre-activation of TLR-2 hampered the anti-inflammatory effect of PPC. In addition, PPC did not inhibit the secretion of IL-6 and TNF-α in TLR-2-/- BMDMs that were activated by LPS. This was consistent with the increased expression of M1 markers and glycolytic and lipid synthesis enzymes but decreased lipid oxidation-related enzymes. These results showed that PPC inhibits the differentiation of M1-type macrophages, which was most likely related to TLR-2-mediated metabolic reprogramming.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Macrophages/physiology , Phosphatidylcholines/pharmacology , Toll-Like Receptor 2/metabolism , Animals , Cell Differentiation , Cellular Reprogramming , Female , Interleukin-6/metabolism , Lipid Peroxidation , Lipopolysaccharides/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , RAW 264.7 Cells , Signal Transduction , Th1 Cells/immunology , Toll-Like Receptor 2/genetics , Tumor Necrosis Factor-alpha/metabolism
12.
Inflammation ; 43(2): 731-743, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31907686

ABSTRACT

Disordered glucose and lipid metabolism contributes to the progression of several liver diseases, while the upregulation of phosphatase and tensin homology deleted on chromosome ten (PTEN), a well-known tumour suppressor gene, can improve the condition through metabolic programming. This study first characterized the metabolic profiles and the involvement of PTEN in the hepatic fibrosis induced by Schistosoma japonicum (S. japonicum) to provide a novel clue for metabolism-targeted treatment. Compared with control mice, infected mice showed infiltrated immune cells in their livers, increased levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) and decreased glucose levels in their sera. The expression of key enzymes in the glycolytic pathway was significantly increased, and the expression of gluconeogenic genes was distinctly decreased. Moreover, the infection upregulated the hepatic expression of enzymes involved in fatty acid oxidation, which was consistent with the decreased number of lipid droplets in livers and the lowered levels of triglyceride in sera. Consistently, PTEN and its downstream signalling were significantly inhibited. In vitro, soluble egg antigen (SEA) downregulated the expression of PTEN in both the macrophage RAW264.7 cell line and the murine hepatocellular carcinoma HEP1-6 cell line, and induced a metabolic phenotype similar to the in vivo results. Overall, this study showed that S. japonicum infection induced the reprogramming of glucose and lipid metabolism in mice during the period of liver fibrosis and that SEA could act as a modulator to trigger such a metabolic switch in macrophages and hepatocytes. PTEN might play an essential role in mediating these metabolic reprogramming events.


Subject(s)
Lipid Metabolism/physiology , Liver Cirrhosis/metabolism , Metabolome/physiology , Schistosoma japonicum/metabolism , Schistosomiasis japonica/metabolism , Animals , Cell Line, Tumor , Female , Liver Cirrhosis/microbiology , Mice , Mice, Inbred BALB C , PTEN Phosphohydrolase/metabolism , RAW 264.7 Cells
13.
Mol Cell Biochem ; 458(1-2): 143-157, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31004309

ABSTRACT

MicroRNAs (miRNAs) regulate osteogenic differentiation of bone cells, which has applications in orthodontics. Here we evaluated the miRNA expression profile of MC3T3-E1 osteoblasts under cyclic tensile stress with chip technology and found that miR-132-3p was up-regulated by 12% cyclic tensile stress. Alkaline phosphatase activity and osteocalcin expression in MC3T3-E1 cells were decreased under these conditions. Smad2 and Smad5 were identified as potential target genes of miR-132-3p. Native and phosphorylated Smad2 and Smad5 expression was negatively correlated with miR-132-3p levels in the cells under cyclic stretch; however, only Smad5 protein level was reduced upon miR-132-3p overexpression. The luciferase reporter assay confirmed a direct interaction between miR-132-3p and Smad5. Thus, miR-132-3p maybe regulates osteoblast differentiation via Smad5 in response to cyclic tensile stress.


Subject(s)
Cell Differentiation , MicroRNAs/metabolism , Osteoblasts/metabolism , Smad5 Protein/metabolism , Stress, Mechanical , Tensile Strength , Alkaline Phosphatase/genetics , Alkaline Phosphatase/metabolism , Animals , Cell Line , Mice , MicroRNAs/genetics , Osteoblasts/cytology , Smad2 Protein/genetics , Smad2 Protein/metabolism , Smad5 Protein/genetics
14.
J Mater Chem B ; 7(12): 1996-2000, 2019 03 28.
Article in English | MEDLINE | ID: mdl-32254803

ABSTRACT

A novel and facile dynamic interfacial adhesion (DIA) strategy has been successfully applied in the reversible fabrication of complex 3D hydrogel constructs based on dynamic covalent bonds (DCBs). By tailoring the geometry of gel building blocks (GBBs) and incorporating stimuli-responsive units, various shapes could be easily achieved.


Subject(s)
Hydrogels/chemistry , Adhesiveness
15.
BMC Immunol ; 19(1): 29, 2018 10 24.
Article in English | MEDLINE | ID: mdl-30355335

ABSTRACT

BACKGROUND: Excretory-secretory products released by Echinococcus granulosus protoscoleces (EgPSC-ESPs) are well-known to regulate T cell responses. However, their direct influence on the differentiation of B cell subsets remains largely elusive. This study investigated the effects of EgPSC-ESPs on the differentiation of IL-10-producing B cells (B10), and explored the possible role of Toll-like receptor 2 (TLR-2) signaling in this process. RESULTS: In comparison to phosphate buffered saline (PBS), B cells exposed to the excretory-secretory products (ESPs) generated higher percentages of B10 cells, with higher expression of IL-10 mRNA, and larger amount of IL-10 production, which were in a dose dependent way. The mRNA and protein expression of TLR-2 in the ESPs-stimulated B cells were significantly higher than those in PBS, which was consistent to the results in B cells isolated from EgPSC infected mice. Moreover, TLR-2-/- B cells in response to ESPs stimulation expressed lower levels of IL-10 mRNA and produced undetectable IL-10 in comparison to those in normal B cells. In addition, Phosphatase and tensin homolog deleted on chromosome ten/AKT/Phosphatidylinositol-3 kinase (PTEN/AKT/PI3K) pathway was activated in ESPs-treated B cells, which was also dependent on TLR-2 signaling. Pam3CSK4, the agonist of TLR-2, could mock the effects of ESPs on the expression of PTEN, AKT and PI3K. CONCLUSION: Overall, this study revealed that TLR-2 signaling was required for B10 induction mediated by EgPSC-ESPs, which might be an immunomodulatory target against the parasite infection.


Subject(s)
Antigens, Helminth/immunology , B-Lymphocyte Subsets/immunology , Echinococcosis/immunology , Echinococcus granulosus/immunology , Interleukin-10/metabolism , Toll-Like Receptor 2/metabolism , Animals , Interleukin-10/genetics , Mice, Inbred C57BL , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Toll-Like Receptor 2/genetics
16.
Int J Oncol ; 52(4): 1305-1316, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29484387

ABSTRACT

A-kinase anchor protein 12 (AKAP12; also known as Gravin) functions as a tumor suppressor in several human primary cancers. However, the potential correlation between histone deacetylase 3 (HDAC3) and AKAP12 and the underlying mechanisms remain unclear. Thus, in this study, in an aim to shed light into this matter, the expression levels of HDAC3 and AKAP12 in 96 colorectal cancer (CRC) and adjacent non-cancerous tissues, as well as in SW480 cells were examined by immunohistochemical, RT-qPCR and western blot analyses. The effects of HDAC3 and AKAP12 on the proliferation, apoptosis and metastasis of CRC cells were examined by cell counting kit-8 (CCK-8) assay, colony formation assays, flow cytometry, cell cycle analysis and Transwell assays. The results revealed that the reduction or loss of AKAP12 expression was detected in 69 (71.8%) of the 96 tissue specimens, whereas HDAC3 was upregulated in 50 (52.1%) of the 96 tumor tissue specimens. AKAP12 expression was markedly increased upon treatment with the HDAC3 inhibitors, trichostatin A (TSA) and RGFP966, at both the mRNA and protein level. Mechanistically, the direct binding of HDAC3 within the intron-1 region of AKAP12 was identified to be indispensable for the inhibition of AKAP12 expression. Moreover, the proliferation, colony-forming ability, cell cycle progression and the migration of the CRC cells were found to be promoted in response to AKAP12 silencing or AKAP12/HDAC3 co-silencing, whereas transfection with si-HDAC3 yielded opposite effects. Apart from the elevated expression of the anti-apoptotic protein, Bcl-2, after AKAP12 knockdown, the increased activity of PI3K/AKT signaling was found to be indispensable for AKAP12-mediated colony formation and migration. On the whole, these findings indicate that AKAP12 may be a potential prognostic predictor and therapeutic target for the treatment of CRC in combination with HDAC3.


Subject(s)
A Kinase Anchor Proteins/metabolism , Cell Cycle Proteins/metabolism , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic/physiology , Histone Deacetylases/metabolism , Adult , Aged , Apoptosis/physiology , Cell Movement/physiology , Cell Proliferation/physiology , Colorectal Neoplasms/metabolism , Disease Progression , Female , Humans , Male , Middle Aged , Neoplasm Invasiveness/pathology , Up-Regulation
17.
Talanta ; 178: 629-635, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29136873

ABSTRACT

The introduction of functional groups into metal organic frameworks has great potential for enhancement in adsorption performance of nitrosamines using solid phase microextraction (SPME). However, pre-functionalization and post-modification generally suffer from the same limitation that the additional functional groups occupy the free volume and thereby decreasing pore volume and special surface area. Herein, we use a modulator-induced defect-formation strategy to prepare the 8-aminocaprylic acid doped UIO-66 (Am-UIO-66) with high adsorption capacity of nitrosamines. Then, the as-synthesized UIO-66 and Am-UIO-66 were fabricated as SPME fibers exhibiting good adsorption capacity towards nitrosoamines. The reason was that the 8-aminocaprylic acid creates structural defects and additional pore spaces of Am-UIO-66, thus increases the specific surface area as well as pore volume. Finally, the Am-UIO-66-coated SPME fiber was successfully applied to the determination of nitrosamines migration from latex gloves and achieved good linearity (20-2000ngL-1), satisfactory recoveries (85.2-112.8%) and rather low LODs (2.61-6.12ngL-1), by coupling with gas chromatography-mass spectrometry (GC-MS).

18.
PLoS One ; 12(10): e0187159, 2017.
Article in English | MEDLINE | ID: mdl-29073244

ABSTRACT

Porcine pancreatic stem cells (PSCs) are considered promising transplant materials that may be used to treat diabetes, but some problems, such as insufficient cell number and low differentiation efficiency, should be solved before its clinical application. Resveratrol is a natural polyphenolic compound that can alleviate the complications of diabetes. In this study, we aimed to explore the specific effect of resveratrol on porcine PSCs. We treated porcine PSCs with 10 µM, 25 µM resveratrol to explore the effect of resveratrol on porcine PSCs. We found that 10 µM resveratrol improved the proliferation of porcine PSCs, increased the expression of A-ß-catenin (active ß-catenin), Pcna, C-Myc, Bcl-2 and sirtuin-1 (Sirt1), and decreased the expression of P53, Caspase3. While 25 µM resveratrol had almost opposite effect compared with 10 µM resveratrol group. The utilization of Dickkopf-related protein 1 (DKK1, Wnt signaling pathway inhibitor) and nicotinamide (Sirt1 inhibitor) suggested that resveratrol regulated cell proliferation by controlling Wnt signaling pathway and this effect was mediated by Sirt1. Our results further revealed that 10 µM resveratrol promoted the formation of ß-like cells regulated by Wnt/ß-catenin signal pathway. Relatively low-dose resveratrol could improve porcine PSCs fate. It lays theoretical foundation for diabetes treatment with cell transplantation in future.


Subject(s)
Pancreas/drug effects , Sirtuin 1/metabolism , Stem Cells/drug effects , Stilbenes/pharmacology , Wnt Signaling Pathway/drug effects , Animals , Cell Lineage , Cell Proliferation/drug effects , Cells, Cultured , Glucose/administration & dosage , Pancreas/cytology , Pancreas/metabolism , Resveratrol , Stem Cells/metabolism , Swine
19.
Am J Transl Res ; 9(9): 4206-4216, 2017.
Article in English | MEDLINE | ID: mdl-28979694

ABSTRACT

This study sought to investigate the anti-inflammatory effect of Polyene Phosphatidylcholine (PPC), a clinical drug that is used to treat hepatopathy, on lipopolysaccharide (LPS)-stimulated macrophages and on bovine collagen II-induced arthritis (CIA) rats. In stimulated primary and Raw264.7 macrophages by LPS, PPC significantly down-regulated the relative expression of mRNA such as IL-6, TNF-α, TLR-2, TLR-4, MyD88, and NF-κB while up-regulated IL-10 and TGF-ß expression. Moreover, the concentration of IL-6, TNF-α, IL-10, and TGF-ß in the cultured supernatants showed the similar tendency with their mRNA alterations. In addition, PPC could significantly inhibit the LPS-induced expression of MyD88 and NF-κB p65 in both mRNA and protein levels. These results suggest that PPC could down-regulate the LPS-stimulated inflammation in macrophages through TLR-2/TLR-4/MyD88/NF-κB pathway in vitro. Furthermore, to explore its effects in vivo, PPC was administrated to CIA rats. In comparison to CIA group, PPC-treated rats showed decreased arthritis score and osteopenia. Besides, PPC exhibited its ability to alleviate the degree of synovial hyperplasia, inflammatory cell infiltration, and destruction of cartilage and bone, thus remarkably improving the condition of CIA rats. In short, this study demonstrated that PPC had the potential to be an anti-inflammatory drug to treat inflammatory disorders such as rheumatoid arthritis.

20.
Brain Res Bull ; 134: 168-176, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28755978

ABSTRACT

Tremendous efforts and funds invested in discovery of novel drug treatments for ischemic stroke have so far failed to deliver clinically efficacious therapies. The reasons for these failures are not fully understood. An indiscriminate use of isoflurane-based surgical anesthesia with or without nitrous oxide may act as an unconstrained, untraceable source of data variability, potentially causing false-positive or false-negative results. To test this hypothesis, a common transient suture middle cerebral artery occlusion (tMCAO) model of ischemic stroke in young adult male rats was used to determine the impact of a typical range of anesthesia durations required for this model on data variability (i.e., infarct volume and neurological deficits). The animals were maintained on spontaneous ventilation. The study results indicated that: (1) Variable duration of isoflurane anesthesia prior, during and after tMCAO is a significant source of data variability as evidenced by measurements of infarct volume and neurological deficits; and (2) Severity of brain injury and neurological deficits after tMCAO is inversely related to the duration of isoflurane anesthesia: e.g., in our study, a 90min isoflurane anesthesia nearly completely protected brain tissues from tMCAO-induced injury and thus, would be expected to obscure the effects of stroke treatments in pre-clinical trials. To elevate transparency, rigor and reproducibility of stroke research and minimize undesirable effects of isoflurane on the outcome of novel drug testing, we propose to monitor, minimize and standardize isoflurane anesthesia in experimental surgeries and make anesthesia duration a required reportable parameter in pre-clinical studies. Specifically, we propose to adopt 20-30min as an optimal anesthesia duration that both minimizes neuroprotective effects of isoflurane and permits a successful completion of surgical procedures in a suture tMCAO model of ischemic stroke in rodents. As the mechanisms and neuroprotective, metabolic and immune effects of general anesthesia are not fully understood, the results of this study cannot be blindly generalized to other anesthetics, animal species and experimental models.


Subject(s)
Anesthetics, Inhalation/administration & dosage , Disease Models, Animal , Infarction, Middle Cerebral Artery , Isoflurane/administration & dosage , Anesthesia , Animals , Brain/drug effects , Brain/pathology , Infarction, Middle Cerebral Artery/pathology , Infarction, Middle Cerebral Artery/physiopathology , Male , Neuroprotective Agents/administration & dosage , Random Allocation , Rats, Sprague-Dawley , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL