Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 222: 115066, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36191442

ABSTRACT

In recent years, nitrosamines have been discovered in some types of drug products that becomes a current regulatory hotspot, and have attracted a lot attention from both regulatory authorities and industry. This manuscript provided an industry perspective on the nitrosamines research. A liquid chromatography coupled with tandem mass spectrometry(LC-MS/MS)method was developed and applied for the quantification of N-nitrosodimethylamine (NDMA) in metformin hydrochloride sustained-release tablets (MET). The key factors resulting in the NDMA formation in MET were identified through forced degradation and drug-excipient studies, which included high temperature, dimethylamine, strong alkali and oxidation conditions, peroxide and alkaline components contained in the formulation as well as the nitrite and nitrate impurities that might be presented in certain excipients. Further, API particle size and water content of the drug product would also affect the growth rate of NDMA. Therefore, the following mitigation strategies to reduce the risk of nitrosamines in the finished drug product are proposed in this manuscript: 1) avoid the use of excipients containing nitrite, nitrate and peroxide impurities; 2) avoid high temperature and strong alkaline environment in the production and storage condition; 3) maintain an appropriate water content level in the formulation. Based on the above principles, it was recommended to add antioxidant or incorporate excipient such as Na2CO3 to modify the formulation pH to weak basic environment in the formulation of MET, which can could effectively prevent formation of NDMA in the stability process.


Subject(s)
Metformin , Nitrosamines , Dimethylnitrosamine/chemistry , Hypromellose Derivatives , Excipients/analysis , Chromatography, Liquid , Nitrites , Delayed-Action Preparations , Nitrates , Tandem Mass Spectrometry , Nitrosamines/chemistry , Tablets , Peroxides , Water
2.
J Mass Spectrom ; 57(12): e4899, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36517208

ABSTRACT

Oseltamivir phosphate is widely used to treat and prevent influenza, and is available in the form of capsules, powder for oral suspension, pediatric solutions, and granules. Because of the amino group, oseltamivir is easy to react with the excipients of the formulation to generate drug-excipient interaction impurities. In this research, two degradation products in a commercial oseltamivir phosphate powder for oral suspension due to interaction between API and citrate were investigated. They were characterized to be 3-((-6-acetamido-3-(ethoxycarbonyl)-5-(pentan-3-yloxy)cyclohex-3-en-1-yl)carbamoyl)-3-hydroxypentanedioic acid and 2-(2-((-6-acetamido-3-(ethoxycarbonyl)-5-(pentan-3-yloxy)cyclohex-3-en-1-yl)amino)-2-oxoethyl)-2-hydroxysuccinic acid by MS and NMR, respectively. Furthermore, the formation mechanisms of these impurities were verified, and the method of analysis of covariance was used to assess the rate of impurities' degradation. HIGHLIGHTS: Two excipient interaction degradation products in commercial oseltamivir phosphate powder for oral suspension were studied and elucidated in detail via LC-MS/MS and NMR. The incompatibility risk of pH conditioners such as citrate and citric acid with formulations that contain an amino group was disclosed in this article. Analysis of covariance was demonstrated to assess the impact of various formulations and preparation techniques on the rate of impurity degradation.


Subject(s)
Excipients , Oseltamivir , Humans , Child , Oseltamivir/chemistry , Excipients/chemistry , Powders , Chromatography, Liquid , Tandem Mass Spectrometry , Drug Contamination , Phosphates , Citrates
3.
J Mass Spectrom ; 57(4): e4821, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35347807

ABSTRACT

Two unknown solution degradants were found during the dissolution testing in 0.1-M HCl for olmesartan medoxomil (OLM) tablets. The structure of the degradants was identified and characterized by liquid chromatography-ultraviolet (LC-UV), liquid chromatography with tandem mass spectrometry (LC-MS/MS), and nuclear magnetic resonance (NMR) and demonstrated to be cyclization of tetrazole and benzene in the olmesartan (OL) and OLM structures. A series of studies including stress studies, simulation studies, and mechanism-based studies were performed to reveal the potential mechanisms that lead to the formation of the unknown degradants. The study results demonstrated that the degradation was catalyzed with radicals that originated from the metal ions leached from the inner surface of high-performance liquid chromatography (HPLC) glass vials with dissolved oxygen under acidic condition. Prerinsing the glass vials with acidic solution dissolved with EDTA can effectively avoid the generation of such oxidative impurities. The present work provides new insights into the understanding of degradation pathways of OLM, which might support the development of OLM tablets.


Subject(s)
Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid/methods , Ions , Olmesartan Medoxomil , Tandem Mass Spectrometry/methods
4.
J Pharm Biomed Anal ; 204: 114248, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34274596

ABSTRACT

An interference peak was found while detecting related substances of azithromycin. It is impressive that the degradation peak occurred at about 70 min in the next injection of the test solution (4 mg/mL or higher). Once the degradation peak was observed, it would keep growing. By using a strategy that Q-TOF high resolution mass spectrometry with mechanism-based stress studies, followed by preparative subsequent structure characterization by 1D and 2D NMR, the unknown peak was identified as azithromycin hydrogen borate. It apparently results from azithromycin and residual boron leaching out of the inner surface of the glass volumetric flasks and vials used in the sample preparation. By simulating the above chemical process, boric acid and azithromycin were dissolved in the same extraction diluent and a big interference peak occurred. It was found that boron-free flasks and vials, such as PMP or PP flasks and PTFE or PP vials could be used for the detection of azithromycin related substances to avoid the production of azithromycin hydrogen borate.


Subject(s)
Azithromycin , Glass , Excipients , Magnetic Resonance Spectroscopy , Mass Spectrometry
5.
Int J Mol Sci ; 16(9): 22190-204, 2015 Sep 14.
Article in English | MEDLINE | ID: mdl-26389883

ABSTRACT

This study aimed at investigating the possible mechanisms of hepatic protective activity of Cichorium intybus L. (chicory) in acute liver injury. Pathological observation, reactive oxygen species (ROS) detection and measurements of biochemical indexes on mouse models proved hepatic protective effect of Cichorium intybus L. Identification of active compounds in Cichorium intybus L. was executed through several methods including ultra performance liquid chromatography/time of flight mass spectrometry (UPLC-TOF-MS). Similarity ensemble approach (SEA) docking, molecular modeling, molecular docking, and molecular dynamics (MD) simulation were applied in this study to explore possible mechanisms of the hepato-protective potential of Cichorium intybus L. We then analyzed the chemical composition of Cichorium intybus L., and found their key targets. Furthermore, in vitro cytological examination and western blot were used for validating the efficacy of the selected compounds. In silico analysis and western blot together demonstrated that selected compound 10 in Cichorium intybus L. targeted Akt-1 in hepatocytes. Besides, compound 13 targeted both caspase-1 and Akt-1. These small compounds may ameliorate liver injury by acting on their targets, which are related to apoptosis or autophagy. The conclusions above may shed light on the complex molecular mechanisms of Cichorium intybus L. acting on hepatocytes and ameliorating liver injury.


Subject(s)
Chemical and Drug Induced Liver Injury/drug therapy , Cichorium intybus/chemistry , Liver/drug effects , Molecular Docking Simulation , Plant Extracts/pharmacology , Animals , Apoptosis , Autophagy , Binding Sites , Caspase 1/chemistry , Caspase 1/genetics , Caspase 1/metabolism , Liver/metabolism , Mice , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Protein Binding , Proto-Oncogene Proteins c-akt/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology
6.
Oncotarget ; 6(19): 17675-84, 2015 Jul 10.
Article in English | MEDLINE | ID: mdl-25970778

ABSTRACT

China has different ethnic minorities that establish their own medical systems and practice experience for thousand years, thereafter named Chinese Ethnic Minority Traditional Drugs (CEMTDs) (http://www.cemtdd.com/index.html). Since many compounds from CEMTDs have been reported to perturb human's dysfunction network and restore human normal physiological conditions, the relationships amongst a series of compounds from specific herbs, their targets and relevant diseases have become our main focus in CEMTD modernization. Herein, we have constructed the first Chinese Ethnic Minority Traditional Drug Database (CEMTDD) mainly from Xinjiang Uygur Autonomous Region (XUAR), retrieving CEMTD-related information from different resources. CEMTDD contains about 621 herbs, 4, 060 compounds, 2, 163 targets and 210 diseases, among which most of herbs can be applied into gerontology therapy including inflammation, cardiovascular disease and neurodegenerative disease. Gerontology is highly occurred in XUAR, and has abundant experience in treating such diseases, which may benefit for developing a new gerontology therapeutic strategy. CEMTDD displays networks for intricate relationships between CEMTDs and treated diseases, as well as the interrelations between active compounds and action targets, which may shed new light on the combination therapy of CEMTDs and further understanding of their herb molecular mechanisms for better modernized utilizations of CEMTDs, especially in gerontology.


Subject(s)
Databases, Factual , Drugs, Chinese Herbal , Humans , Medicine, Chinese Traditional
7.
BMC Complement Altern Med ; 13: 252, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-24090456

ABSTRACT

BACKGROUND: Zhuyeqing Liquor (ZYQL), a well-known Chinese traditional health liquor, has various biological properties, including anti-oxidant, anti-inflammatory, immunoenhancement and cardiovascular protective effects. METHODS: The protective effects of Zhuyeqing Liquor (ZYQL) on the immune function was investigated in vivo in normal healthy mice and immunosuppressed mice treated with Cyclophosphamide (Cy, 100 mg/kg) by intraperitoneal injection on days 4, 8 and 12. ZYQL (100, 200 and 400 mg/kg) was administered via gavage daily for 14 days. The phagocytotic function of mononuclear phagocytic system was detected with carbon clearance methods, the levels of interleukin-6 (IL-6) and interferon-gamma (IFN-γ) in serum were detected with Enzyme linked immunosorbent assay (ELISA). Immune organs were weighed and organ indexes (organ weight/body weight) of thymus and spleen were calculated. Meanwhile, the activity of lysozyme (LSZ) in serum and the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) in spleen tissue were measured. RESULTS: ZYQL significantly upgrades the K value for clearance of carbon particles in normal mice treated with ZYQL (400 mg/kg) and immunosuppressed mice treated with ZYQL (100, 200 and 400 mg/kg) together with Cy (100 mg/kg) in vivo. The treatment of ZYQL (100, 200 and 400 mg/kg) effectively increased the activity of serum lysozyme as well as promoted the serum levels of IL-6 and IFN-γ in normal mice and immunosuppressed mice. Furthermore, ZYQL (100, 200 and 400 mg/kg) had an antioxidant effects in immune system by enhancing the antioxidant enzyme activity of SOD, CAT and GSH-Px in vivo. In addition, ZYQL (100, 200 and 400 mg/kg) effectively elevated the Cy-induced decreased organ index (thymus and spleen). CONCLUSIONS: The present work shows that the dose-dependent administration of ZYQL is capable of influencing immune responses, which implying that its valuable functional health may be attributed partly to its protective effects for the immune function.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Protective Agents/pharmacology , Analysis of Variance , Animals , Carbon/pharmacokinetics , Cytokines/blood , Immunocompromised Host , Male , Mice , Mice, Inbred BALB C , Muramidase/blood , Phagocytosis/drug effects , Spleen/drug effects , Spleen/enzymology , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...