Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
EClinicalMedicine ; 72: 102623, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38800802

ABSTRACT

Background: In ORIENT-15 study, sintilimab plus chemotherapy demonstrated significant improvement on overall survival (OS) versus placebo plus chemotherapy in first-line treatment of advanced esophageal squamous cell carcinoma (ESCC). Here, we report effect of sintilimab plus chemotherapy on health-related quality of life (HRQoL) in patients with advanced ESCC. Methods: From December 14, 2018 to August 28, 2022, HRQoL was evaluated in all randomized patients using European Organization for Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire Core 30 items (QLQ-C30), EORTC Quality of Life Questionnaire Oesophageal Cancer Module 18 items (QLQ-OES18), and visual analogue scale (VAS) of the EuroQol five-dimensional five-level questionnaire (EQ-5D-5L). Mean scores of each scale were described by treatment group through week 60. Least-squares mean (LSM) score change from baseline through week 24 were analyzed using the mixed-model repeated-measures method. Time to the first onset of deterioration (TTD) and OS for each scale were estimated. Clinical Trials Registration: NCT03748134. Findings: As of August 28, 2022, 689 of 690 enrolled patients were assessed for HRQoL analysis (sintilimab group: 340, placebo group: 349). Median follow-up was 32.2 months. Differences in LSM favored sintilimab over placebo for QLQ-C30 social functioning (LSM difference: 3.06, 95% CI: 0.55 to 5.57; P = 0.0170), pain (-2.24, 95% CI: -4.30 to -0.17; P = 0.0337), fatigue (-2.24, 95% CI: -4.46 to -0.02; P = 0.0479), constipation (-3.27, 95% CI -5.49 to -1.05; P = 0.0039), QLQ-OES18 pain (-1.77, 95% CI -3.11 to -0.43; P = 0.0097), trouble swallowing saliva (-2.09, 95% CI: -3.77 to -0.42; P = 0.0146), and choked when swallowing (-3.23, 95% CI: -5.60 to -0.86; P = 0.0076). TTD favored sintilimab over placebo for QLQ-OES18 dysphagia (Hazard ratio [HR]: 0.76, 95% CI: 0.61-0.94, P = 0.0104), and trouble swallowing saliva (HR: 0.48, 95% CI: 0.35-0.67, P < 0.0001). Improved OS were observed in patients with better performance in several functioning and symptom scales of QLQ-C30 and QLQ-QES18. Interpretation: The statistically significant differences of several HRQoL scales and improvements in delayed deterioration observed in our study further support the use of sintilimab plus chemotherapy as first-line treatment for advanced ESCC. Funding: This study was funded by Innovent Biologics and was co-funded by Eli Lilly.

2.
Front Oncol ; 13: 1240868, 2023.
Article in English | MEDLINE | ID: mdl-37965447

ABSTRACT

Objective: To discern long non-coding RNAs (lncRNAs) with prognostic relevance in the context of lung squamous cell carcinoma (LUSC), we intend to predict target genes by leveraging The Cancer Genome Atlas (TCGA) repository. Subsequently, we aim to investigate the proliferative potential of critical lncRNAs within the LUSC milieu. Methods: DESeq2 was employed to identify differentially expressed genes within the TCGA database. Following this, we utilized both univariate and multivariate Cox regression analyses to identify lncRNAs with prognostic relevance. Noteworthy lncRNAs were selected for validation in cell lines. The intracellular localization of these lncRNAs was ascertained through nucleocytoplasmic isolation experiments. Additionally, the impact of these lncRNAs on cellular proliferation, invasion, and migration capabilities was investigated using an Antisense oligonucleotides (ASO) knockdown system. Results: Multivariate Cox regression identified a total of 12 candidate genes, consisting of seven downregulated lncRNAs (BRE-AS1, CCL15-CCL14, DNMBP-AS1, LINC00482, LOC100129034, MIR22HG, PRR26) and five upregulated lncRNAs (FAM83A-AS1, LINC00628, LINC00923, LINC01341, LOC100130691). The target genes associated with these lncRNAs exhibit significant enrichment within diverse biological pathways, including metabolic processes, cancer pathways, MAPK signaling, PI3K-Akt signaling, protein binding, cellular components, cellular transformation, and other functional categories. Furthermore, nucleocytoplasmic fractionation experiments demonstrated that LINC00923 and LINC01341 are predominantly localized within the cellular nucleus. Subsequent investigations utilizing CCK-8 assays and colony formation assays revealed that the knockdown of LINC00923 and LINC01341 effectively suppressed the proliferation of H226 and H1703 cells. Additionally, transwell assays showed that knockdown of LINC00923 and LINC01341 significantly attenuated the invasive and migratory capacities of H226 and H1703 cells. Conclusion: This study has identified 12 candidate lncRNA associated with prognostic implications, among which LINC00923 and LINC01341 exhibit potential as markers for the prediction of LUSC outcomes.

3.
Cancers (Basel) ; 15(17)2023 Sep 02.
Article in English | MEDLINE | ID: mdl-37686677

ABSTRACT

Esophageal squamous cell cancer (ESCC) is an aggressive disease associated with a poor prognosis. Long non-coding RNAs (lncRNAs) and oxidative stress play crucial roles in tumor progression. We aimed to identify an oxidative stress-related lncRNA signature that could predict the prognosis in ESCC. In the GSE53625 dataset, we identified 332 differentially expressed lncRNAs (DElncRNAs) between ESCC and control samples, out of which 174 were oxidative stress-related DElncRNAs. Subsequently, seven oxidative stress-related DElncRNAs (CCR5AS, LINC01749, PCDH9-AS1, TMEM220-AS1, KCNMA1-AS1, SNHG1, LINC01672) were selected based on univariate and LASSO Cox to build a prognostic risk model, and their expression was detected by RT-qPCR. The model exhibited an excellent ability for the prediction of overall survival (OS) and other clinicopathological traits using Kaplan-Meier (K-M) survival curves, receiver operating characteristic (ROC) curves, and the Wilcoxon test. Additionally, analysis of infiltrated immune cells and immune checkpoints indicated differences in immune status between the two risk groups. Finally, the in vitro experiments showed that PCDH9-AS1 overexpression inhibited proliferation ability and promoted apoptosis and oxidative stress levels in ESCC cells. In conclusion, our study demonstrated that a novel oxidative stress-related DElncRNA prognostic model performed favorably in predicting ESCC patient prognosis and benefits personalized clinical applications.

4.
PLoS One ; 18(7): e0288403, 2023.
Article in English | MEDLINE | ID: mdl-37428781

ABSTRACT

OBJECTIVE: Based on the GEO, TCGA and GTEx databases, we reveal the possible molecular mechanism of the variable shear factor QKI in epithelial mesenchymal transformation (EMT) of oesophageal cancer. METHODS: Based on the TCGA and GTEx databases, the differential expression of the variable shear factor QKI in oesophageal cancer samples was analysed, and functional enrichment analysis of QKI was performed based on the TCGA-ESCA dataset. The percent-spliced in (PSI) data of oesophageal cancer samples were downloaded from the TCGASpliceSeq database, and the genes and variable splicing types that were significantly related to the expression of the variable splicing factor QKI were screened out. We further identified the significantly upregulated circRNAs and their corresponding coding genes in oesophageal cancer, screened the EMT-related genes that were significantly positively correlated with QKI expression, predicted the circRNA-miRNA binding relationship through the circBank database, predicted the miRNA-mRNA binding relationship through the TargetScan database, and finally obtained the circRNA-miRNA-mRNA network through which QKI promoted the EMT process. RESULTS: Compared with normal control tissue, QKI expression was significantly upregulated in tumour tissue samples of oesophageal cancer patients. High expression of QKI may promote the EMT process in oesophageal cancer. QKI promotes hsa_circ_0006646 and hsa_circ_0061395 generation by regulating the variable shear of BACH1 and PTK2. In oesophageal cancer, QKI may promote the production of the above two circRNAs by regulating variable splicing, and these circRNAs further competitively bind miRNAs to relieve the targeted inhibition of IL-11, MFAP2, MMP10, and MMP1 and finally promote the EMT process. CONCLUSION: Variable shear factor QKI promotes hsa_circ_0006646 and hsa_circ_0061395 generation, and downstream related miRNAs can relieve the targeted inhibition of EMT-related genes (IL11, MFAP2, MMP10, MMP1) and promote the occurrence and development of oesophageal cancer, providing a new theoretical basis for screening prognostic markers of oesophageal cancer patients.


Subject(s)
Esophageal Neoplasms , MicroRNAs , Humans , RNA, Circular/genetics , Epithelial-Mesenchymal Transition/genetics , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 10/metabolism , MicroRNAs/genetics , RNA, Messenger/metabolism , Esophageal Neoplasms/genetics , RNA-Binding Proteins
5.
Front Oncol ; 13: 1096364, 2023.
Article in English | MEDLINE | ID: mdl-37293586

ABSTRACT

Objective: This study aimed to establish a predictive model for occult lymph node metastasis (LNM) in patients with clinical stage I-A non-small cell lung cancer (NSCLC) based on contrast-enhanced CT. Methods: A total of 598 patients with stage I-IIA NSCLC from different hospitals were randomized into the training and validation group. The "Radiomics" tool kit of AccuContour software was employed to extract the radiomics features of GTV and CTV from chest-enhanced CT arterial phase pictures. Then, the least absolute shrinkage and selection operator (LASSO) regression analysis was applied to reduce the number of variables and develop GTV, CTV, and GTV+CTV models for predicting occult lymph node metastasis (LNM). Results: Eight optimal radiomics features related to occult LNM were finally identified. The receiver operating characteristic (ROC) curves of the three models showed good predictive effects. The area under the curve (AUC) value of GTV, CTV, and GTV+CTV model in the training group was 0.845, 0.843, and 0.869, respectively. Similarly, the corresponding AUC values in the validation group were 0.821, 0.812, and 0.906. The combined GTV+CTV model exhibited a better predictive performance in the training and validation group by the Delong test (p<0.05). Moreover, the decision curve showed that the combined GTV+CTV predictive model was superior to the GTV or CTV model. Conclusion: The radiomics prediction models based on GTV and CTV can predict occult LNM in patients with clinical stage I-IIA NSCLC preoperatively, and the combined GTV+CTV model is the optimal strategy for clinical application.

6.
BMC Med ; 21(1): 173, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37147645

ABSTRACT

BACKGROUND: Apatinib, a highly selective VEGFR2 inhibitor, significantly improved efficacy versus placebo as a third- and later-line treatment for advanced gastric cancer in phase 2 and 3 trials. This prospective, single-arm, multicenter phase IV AHEAD study was conducted to verify the safety and efficacy of apatinib in patients with advanced or metastatic gastric or gastroesophageal adenocarcinoma after at least two lines of systematic therapy in clinical practice settings. METHODS: Patients with advanced gastric cancer who had previously failed at least two lines of chemotherapy received oral apatinib until disease progression, death or unacceptable toxicity. The primary endpoint was safety. The secondary endpoints included objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS) and overall survival (OS). Adverse events were summarized by the incidence rate. Median OS and PFS were estimated using the Kaplan-Meier method. ORR, DCR, OS at 3 and 6 months, and PFS at 3 and 6 months were calculated, and their 95% CIs were estimated according to the Clopper-Pearson method. RESULTS: Between May 2015 and November 2019, a total of 2004 patients were enrolled, and 1999 patients who received at least one dose of apatinib were assessed for safety. In the safety population, 87.9% of patients experienced treatment-related adverse events (TRAEs), with the most common hypertension (45.2%), proteinuria (26.5%), and white blood cell count decreased (25.3%). Additionally, 51% of patients experienced grade ≥ 3 TRAEs. Fatal TRAEs occurred in 57 (2.9%) patients. No new safety concerns were reported. Among the 2004 patients included in the intention-to-treat population, the ORR was 4.4% (95% CI, 3.6-5.4%), and DCR was 35.8% (95% CI, 33.7-38.0%). The median PFS was 2.7 months (95% CI 2.2-2.8), and the median OS was 5.8 months (95% CI 5.4-6.1). CONCLUSIONS: The findings in the AHEAD study confirmed the acceptable and manageable safety profile and clinical benefit of apatinib in patients with advanced gastric cancer as a third- or later-line of treatment. TRIAL REGISTRATION: This study was registered with ClinicalTrials.gov NCT02426034. Registration date was April 24, 2015.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Stomach Neoplasms , Humans , Antineoplastic Agents/adverse effects , Stomach Neoplasms/drug therapy , Prospective Studies , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , Esophagogastric Junction/pathology
7.
J Immunother Cancer ; 11(5)2023 05.
Article in English | MEDLINE | ID: mdl-37217247

ABSTRACT

BACKGROUND: Tumor-associated macrophages (TAMs) are a major component of the tumor microenvironment (TME) and exert an important role in tumor progression. Due to the heterogeneity and plasticity of TAMs, modulating the polarization states of TAMs is considered as a potential therapeutic strategy for tumors. Long noncoding RNAs (lncRNAs) have been implicated in various physiological and pathological processes, yet the underlying mechanism on how lncRNAs manipulate the polarization states of TAMs is still unclear and remains to be further investigated. METHODS: Microarray analyses were employed to characterize the lncRNA profile involved in THP-1-induced M0, M1 and M2-like macrophage. Among those differentially expressed lncRNAs, NR_109 was further studied, for its function in M2-like macrophage polarization and the effects of the condition medium or macrophages mediated by NR_109 on tumor proliferation, metastasis and TME remodeling both in vitro and in vivo. Moreover, we revealed how NR_109 interacted with far upstream element-binding protein 1 (FUBP1) to regulate the protein stability through hindering ubiquitination modification by competitively binding with JVT-1. Finally, we examined sections of tumor patients to probe the correlation among the expression of NR_109 and related proteins, showing the clinical significance of NR_109. RESULTS: We found that lncRNA NR_109 was highly expressed in M2-like macrophages. Knockdown NR_109 impeded IL-4 induced M2-like macrophage polarization and significantly reduced the activity of M2-like macrophages to support the proliferation and metastasis of tumor cells in vitro and in vivo. Mechanistically, NR_109 competed with JVT-1 to bind FUBP1 at its C-terminus domain, impeded the ubiquitin-mediated degradation of FUBP1, activated c-Myc transcription and thus promoted M2-like macrophages polarization. Meanwhile, as a transcription factor, c-Myc could bind to the promoter of NR_109 and enhance the transcription of NR_109. Clinically, high NR_109 expression was found in CD163+ TAMs from tumor tissues and was positively correlated with poor clinical stages of patients with gastric cancer and breast cancer. CONCLUSIONS: Our work revealed for the first time that NR_109 exerted a crucial role in regulating the phenotype-remodeling and function of M2-like macrophages via a NR_109/FUBP1/c-Myc positive feedback loop. Thus, NR_109 has great translational potentials in the diagnosis, prognosis and immunotherapy of cancer.


Subject(s)
Neoplasms , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Tumor Microenvironment , Cell Line, Tumor , Macrophages/metabolism , Gene Expression Regulation , Neoplasms/pathology
8.
Front Oncol ; 13: 1098581, 2023.
Article in English | MEDLINE | ID: mdl-37035154

ABSTRACT

Lung cancer is one of the most prevalent, fatal, and highly heterogeneous diseases that, seriously threaten human health. Lung cancer is primarily caused by the aberrant expression of multiple genes in the cells. Lung cancer treatment options include surgery, radiation, chemotherapy, targeted therapy, and immunotherapy. In recent decades, significant progress has been made in developing therapeutic agents for lung cancer as well as a biomarker for its early diagnosis. Nonetheless, the alternative applications of traditional pre-clinical models (cell line models) for diagnosis and prognosis prediction are constrained by several factors, including the lack of microenvironment components necessary to affect cancer biology and drug response, and the differences between laboratory and clinical results. The leading reason is that substantial shifts accrued to cell biological behaviors, such as cell proliferative, metastatic, invasive, and gene expression capabilities of different cancer cells after decades of growing indefinitely in vitro. Moreover, the introduction of individualized treatment has prompted the development of appropriate experimental models. In recent years, preclinical research on lung cancer has primarily relied on the patient-derived tumor xenograft (PDX) model. The PDX provides stable models with recapitulate characteristics of the parental tumor such as the histopathology and genetic blueprint. Additionally, PDXs offer valuable models for efficacy screening of new cancer drugs, thus, advancing the understanding of tumor biology. Concurrently, with the heightened interest in the PDX models, potential shortcomings have gradually emerged. This review summarizes the significant advantages of PDXs over the previous models, their benefits, potential future uses and interrogating open issues.

9.
Neurotoxicology ; 95: 107-116, 2023 03.
Article in English | MEDLINE | ID: mdl-36642386

ABSTRACT

Pb can enhance blood-cerebrospinal fluid barrier (BCSFB) permeability and accumulate in brain tissue, leading to central nervous system (CNS) dysfunction. Choroid plexus (CP) epithelial cells are the main components of the BCSFB with crucial functions in BCSFB maintenance. However, the mechanism by which Pb exposure affects CP epithelial cells remains unclear. Here, ferroptosis was identified as the major programmed cell death modality by sophisticated high-throughput sequencing and biochemical investigations in primary cultured CP epithelial cells following Pb exposure. Bioinformatics analysis using the ferroptosis database revealed that 16 ferroptosis-related genes were differentially expressed in primary cultured CP epithelial cells following Pb exposure. Among them, Gpx4, Slc7a11, Tfrc, and Slc40a1 were hub ferroptosis-related genes. In addition, CP epithelial cells can be impaired when the concentration of the Pb2+ reached 2050 µg/L (10 µM PbAc), which included the decrease of cell viability, Gpx4 and Slc7a11 proteins expression, etc. Moreover, inhibition of ferroptosis enhanced CP epithelial cell viability and reduced BCSFB permeability in vitro following Pb exposure. In summary, ferroptosis of CP epithelial cells is involved in BCSFB dysfunction following Pb exposure. Gpx4, Slc7a11, Tfrc, and Slc40a1 are hub ferroptosis-related genes in CP epithelial cells.


Subject(s)
Ferroptosis , Lead , Blood-Brain Barrier/metabolism , Choroid Plexus/metabolism , Epithelial Cells/metabolism , Lead/metabolism , Iron/metabolism
10.
J Clin Oncol ; 41(3): 651-663, 2023 01 20.
Article in English | MEDLINE | ID: mdl-36206498

ABSTRACT

PURPOSE: The CHOICE-01 study investigated the efficacy and safety of toripalimab in combination with chemotherapy as a first-line treatment for advanced non-small-cell lung cancer (NSCLC). PATIENTS AND METHODS: Patients (N = 465) with treatment-naive, advanced NSCLC without EGFR/ALK mutations were randomly assigned 2:1 to receive toripalimab 240 mg (n = 309) or placebo (n = 156) once every 3 weeks in combination with chemotherapy for 4-6 cycles, followed by the maintenance of toripalimab or placebo once every 3 weeks plus standard care. Stratification factors included programmed death ligand-1 expression status, histology, and smoking status. The primary end point was progression-free survival (PFS) by investigator per RECIST v1.1. Secondary end points included overall survival and safety. RESULTS: At the final PFS analysis, PFS was significantly longer in the toripalimab arm than in the placebo arm (median PFS, 8.4 v 5.6 months, hazard ratio = 0.49; 95% CI, 0.39 to 0.61; two-sided P < .0001). At the interim OS analysis, the toripalimab arm had a significantly longer OS than the placebo arm (median OS not reached v 17.1 months, hazard ratio = 0.69; 95% CI, 0.53 to 0.92; two-sided P = .0099). The incidence of grade ≥ 3 adverse events was similar between the two arms. Treatment effects were similar regardless of programmed death ligand-1 status. Genomic analysis using whole-exome sequencing from 394 available tumor samples revealed that patients with high tumor mutational burden were associated with significantly better PFS in the toripalimab arm (median PFS 13.1 v 5.5 months, interaction P = .026). Notably, patients with mutations in the focal adhesion-PI3K-Akt signaling pathway achieved significantly better PFS and OS in the toripalimab arm (interaction P values ≤ .001). CONCLUSION: Toripalimab plus chemotherapy significantly improves PFS and OS in patients with treatment-naive advanced NSCLC while having a manageable safety profile. Subgroup analysis showed the OS benefit was mainly driven by the nonsquamous subpopulation.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Phosphatidylinositol 3-Kinases , Antibodies, Monoclonal, Humanized/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects
11.
Front Cell Dev Biol ; 10: 1014030, 2022.
Article in English | MEDLINE | ID: mdl-36340041

ABSTRACT

Emerging evidence indicates that the cellular electromagnetic field regulates the fundamental physics of cell biology. The electromagnetic oscillations and synchronization of biomolecules triggered by the internal and external pulses serve as the physical basis of the cellular electromagnetic field. Recent studies have indicated that centrosomes, a small organelle in eukaryotic cells that organize spindle microtubules during mitosis, also function as a nano-electronic generator in cells. Additionally, cellular electromagnetic fields are defined by cell types and correlated to the epigenetic status of the cell. These interactions between tissue-specific electromagnetic fields and chromatin fibers of progenitor cells regulate cell differentiation and organ sizes. The same mechanism is implicated in the regulation of tissue homeostasis and morphological adaptation in evolution. Intercellular electromagnetic interactions also regulate the migratory behaviors of cells and the morphogenesis programs of neural circuits. The process is closely linked with centrosome function and intercellular communication of the electromagnetic fields of microtubule filaments. Clearly, more and more evidence has shown the importance of cellular electromagnetic fields in regulatory processes. Furthermore, a detailed understanding of the physical nature of the inter- and intracellular electromagnetic interactions will better our understanding of fundamental biological questions and a wide range of biological processes.

12.
Biochim Biophys Acta Mol Basis Dis ; 1868(12): 166557, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36162624

ABSTRACT

Lung cancer is the most malignant human cancer worldwide, also with the highest incidence rate. However, small-cell lung cancer (SCLC) accounts for 14 % of all lung cancer cases. Approximately 10 % of patients with SCLC have brain metastasis at the time of diagnosis, which is the leading cause of death of patients with SCLC worldwide. The median overall survival is only 4.9 months, and a long-tern cure exists for patients with SCLC brain metastasis due to limited common therapeutic options. Recent studies have enhanced our understanding of the molecular mechanisms leading to meningeal metastasis, and multimodality treatments have brought new hopes for a better cure for the disease. This review aimed to offer an insight into the cellular processes of different metastatic stages of SCLC revealed by the established animal models, and into the major diagnostic methods of SCLC. Additionally, it provided in-depth information on the recent advances in SCLC treatments, and highlighted several new models and biomarkers with promises to improve the prognosis of SCLC.


Subject(s)
Brain Neoplasms , Lung Neoplasms , Small Cell Lung Carcinoma , Animals , Brain Neoplasms/diagnosis , Brain Neoplasms/therapy , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/therapy , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/therapy
13.
Eur J Radiol ; 154: 110443, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35901600

ABSTRACT

BACKGROUNDS: Accumulated evidence has proven that computer-derived features from computed tomography (CT) through radiomics and deep learning technologies can identify extensive characteristics of pulmonary malignancies, such as nodules detection and malignant lesion discrimination. However, there are few studies on whether CT images can reflect histological subtypes of lung cancer through computer-derived features. METHODS: Contrast-enhanced CT images prior treatment from 417 patients diagnosed with small cell lung cancer (SCLC), lung adenocarcinoma (ADC), or lung squamous cell carcinoma (SCC) were collected. ITK-SNAP software was used by trained radiologists for the manual delineation of tumor volume. Patients of each category (SCLC, ADC, SCC) were then randomly split into training datasets and test datasets in an approximately ratio of 8:2. After image pre-processing and augmentation, 25,042 CT images from the training datasets were used to train our self-developed deep learning model for fast-tracking tumor lesions and classifying corresponding histological subtypes simultaneously. The performance of the network was evaluated by accuracy, F1-score and weighted F1-average using 1,921 testing images based on parameters generated during training. RESULTS: The prediction accuracy of SCLC, ADC, and SCC were 0.83, 0.75 and 0.67, respectively. The weighted F1-average was 0.75. ADC obtained the best F1-score of 0.78, which was outperformed SCLC (0.77) and SCC (0.66). The corresponding AUC values of SCLC, ADC, and SCC were 0.87, 0.84, and 0.76, respectively. Only 0.24 s were required to simultaneously achieve functions of tumor localization and histological classification on a thoracic CT image slice. The heat map visualization illustrated the extracted tumor features to classify subtypes of lung cancer by the proposed model. CONCLUSIONS: The newly developed multi-task algorithm provides a CNN-based DL approach in lung cancer for automatically fast-tracking tumor lesions and classifying corresponding histological subtypes in one-step.


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Algorithms , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Retrospective Studies , Tomography, X-Ray Computed/methods
14.
BMJ ; 377: e068714, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440464

ABSTRACT

OBJECTIVE: To evaluate sintilimab versus placebo in combination with chemotherapy (cisplatin plus paclitaxel or cisplatin plus 5-fluorouracil) as first line treatment of unresectable locally advanced, recurrent, or metastatic oesophageal squamous cell carcinoma. DESIGN: Multicentre, randomised, double blind, phase 3 trial. SETTING: 66 sites in China and 13 sites outside of China between 14 December 2018 and 9 April 2021. PARTICIPANTS: 659 adults (aged ≥18 years) with advanced or metastatic oesophageal squamous cell carcinoma who had not received systemic treatment. INTERVENTION: Participants were randomised 1:1 to receive sintilimab or placebo (3 mg/kg in patients weighing <60 kg or 200 mg in patients weighing ≥60 kg) in combination with cisplatin 75 mg/m2 plus paclitaxel 175 mg/m2 every three weeks. The trial was amended to allow investigators to choose the chemotherapy regimen: cisplatin plus paclitaxel or cisplatin plus 5-fluorouracil (800 mg/m2 continuous infusion on days 1-5). MAIN OUTCOME MEASURES: Overall survival in all patients and in patients with combined positive scores of ≥10 for expression of programmed cell death ligand 1. RESULTS: 659 patients were randomly assigned to sintilimab (n=327) or placebo (n=332) with chemotherapy. 616 of 659 patients (93%) received sintilimab or placebo in combination with cisplatin plus paclitaxel and 43 of 659 patients (7%) received sintilimab or placebo in combination with cisplatin plus 5-fluorouracil. At the interim analysis, sintilimab with chemotherapy showed better overall survival compared with placebo and chemotherapy in all patients (median 16.7 v 12.5 months, hazard ratio 0.63, 95% confidence interval 0.51 to 0.78, P<0.001) and in patients with combined positive scores of ≥10 (17.2 v 13.6 months, 0.64, 0.48 to 0.85, P=0.002). Sintilimab and chemotherapy significantly improved progression free survival compared with placebo and chemotherapy in all patients (7.2 v 5.7 months, 0.56, 0.46 to 0.68, P<0.001) and in patients with combined positive scores of ≥10 (8.3 v 6.4 months, 0.58, 0.45 to 0.75, P<0.001). Adverse events related to treatment occurred in 321 of 327 patients (98%) in the sintilimab-chemotherapy group versus 326 of 332 (98%) patients in the placebo-chemotherapy group. Rates of adverse events related to treatment, grade ≥3, were 60% (196/327) and 55% (181/332) in the sintilimab-chemotherapy and placebo-chemotherapy groups, respectively. CONCLUSIONS: Compared with placebo, sintilimab in combination with cisplatin plus paclitaxel showed significant benefits in overall survival and progression free survival as first line treatment in patients with advanced or metastatic oesophageal squamous cell carcinoma. Similar benefits of sintilimab with cisplatin plus 5-fluorouracil seem promising. TRIAL REGISTRATION: ClinicalTrials.gov NCT03748134.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Adolescent , Adult , Antibodies, Monoclonal, Humanized/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cisplatin/therapeutic use , Double-Blind Method , Esophageal Neoplasms/drug therapy , Esophageal Squamous Cell Carcinoma/drug therapy , Fluorouracil/therapeutic use , Humans , Paclitaxel/therapeutic use
15.
J Cancer ; 12(13): 3967-3975, 2021.
Article in English | MEDLINE | ID: mdl-34093803

ABSTRACT

As a kind of tumor commonly seen, no effective treatment is available for esophageal squamous cell carcinoma (ESCC). Therefore, seeking a new treatment is urgent. Demethylzeylasteral (T-96) isolated from Tripterygium wilfordii root bark embraces outstanding good antitumor activity. However, as for the mechanism of T-96 work on ESCC cells, it is rarely reported. In this study, we found that T-96 has inhibition when ESCC cells are proliferating, migrating and cloning. Moreover, relevant effects are influenced by dose and time. And T-96 can result in the stop of G2/M phase and induce apoptosis of ESCC cells. In addition, the expressions of Cyclin B1, Cyclin D1, Bcl-2, PARP1 and Survivin were decreased after starch demethylation. Despite of this, Bax and PARP1's expressions went up. To add up, there was an obvious increase in the expression of E-cadherin, while that of N-cadherin, Vimentin and MMP9 decreased after T-96 treatment. Moreover, the expression of Wnt/ß-Catenin pathway, which concerns proteins ß-Catenin, c-Myc and Wnt3a decreased. Our study shows that T-96 inhibits the proliferation and migration of esophageal cancer cells through Wnt/ß-catenin pathway. Moreover, it gives rise to cell cycle arrest and apoptosis. According to the research results, T-96 tends to be put into use when treating ESCC patients, thus laying the experimental foundation for clinical research.

17.
Cell Biosci ; 10(1): 146, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33353561

ABSTRACT

BACKGROUND: Increased reactive oxygen species (ROS) production by arsenic treatment in solid tumors showed to be effective to sensitize cancer cells to chemotherapies. Arsenic nano compounds are known to increase the ROS production in solid tumors. METHODS: In this study we developed arsenic-ferrosoferric oxide conjugated Nano Complex (As2S2-Fe3O4, AFCNC) to further promote the ROS induction ability of arsenic reagent in solid tumors. We screen for the molecular pathways that are affect by arsenic treatment in ESCC cancer cells. And explored the underlying molecular mechanism for the arsenic mediated degradations of the key transcription factor we identified in the gene microarray screen. Mouse xenograft model were used to further verify the synthetic effects of AFCNC with chemo and radiation therapies, and the molecular target of arsenic treatment is verified with IHC analysis. RESULTS: With gene expression microarray analysis we found Hippo signaling pathway is specifically affected by arsenic treatment, and induced ubiquitination mediated degradation of YAP in KYSE-450 esophageal squamous cell carcinoma (ESCC) cells. Mechanistically we proved PML physically interacted with YAP, and arsenic induced degradation PML mediated the degradation of YAP in ESCC cells. As a cancer stem cell related transcription factor, YAP 5SA over expressions in cancer cells are correlated with resistance to chemo and radiation therapies. We found AFCNC treatment inhibited the increased invasion and migration ability of YAP 5SA overexpressing KYSE-450 cells. AFCNC treatment also effectively reversed protective effects of YAP 5SA overexpression against cisplatin induced apoptosis in KYSE-450 cells. Lastly, with ESCC mouse xenograft model we found AFCNC combined with cisplatin treatment or radiation therapy significantly reduced the tumor volumes in vivo in the xenograft ESCC tumors. CONCLUSIONS: Together, these findings suggested besides ROS, YAP is a potential target for arsenic based therapy in ESCC, which should play an important role in the synthetic effects of arsenic nano complex with chemo and radiation therapy.

18.
J Cancer ; 11(22): 6516-6529, 2020.
Article in English | MEDLINE | ID: mdl-33046973

ABSTRACT

Arsenic trioxide (ATO) is widely studied for its antitumor efficacy and several recent studies suggested the immune modulatory effects of ATO in animal models. In this study we found ATO treatment induced increased ROS production and DNA damage in esophageal squamous cell carcinoma (ESCC) cells, led to DNA damage mediated degradation of Cyclin D1 and upregulation of PD-L1 in these cancer cells. Mechanistically, we found ATO induced a transient upregulation and nuclear translocation of Cyclin D1 by sumoylation. Followed with increased ubiquitination and degradation of Cyclin D1 through T286 phosphorylation, and at least partly mediated by Stat1 Y701 phosphorylation. We observed inversed correlations between Cyclin D1 and PD-L1 expression levels in human ESCC tissues. With 4NQO induced PD-L1 humanized mouse oral and esophageal squamous carcinoma model, we found combinatory administration of ATO and check point inhibitor resulted in a significant reduction of tumor volumes. Inversed correlation between Cyclin D1 with PD-L1 was also observed in the 4NQO induced mouse ESCC and OSCC model. Together, these data suggested ATO induced degradation of Cyclin D1 and functional suppression of CDK4/6 pathway sensitized OSCC and ESCC to checkpoint inhibitor treatment.

19.
20.
J Cancer ; 11(19): 5568-5577, 2020.
Article in English | MEDLINE | ID: mdl-32913452

ABSTRACT

Esophageal squamous cell carcinoma (ESCC) is an invasive gastrointestinal malignancy and in urgent need of new effective therapies. Gambogic acid (GA) exhibits anti-cancer effects in many cancer cells, but it remains to be determined whether GA has the same effect on ESCC. Here, we reported that GA treatment caused an inhibition in ESCC cell proliferation, migration and invasion. Meanwhile, GA induced dose-dependent apoptosis of ESCC cells, repressed the expression of Bcl2 and up-regulated the levels of Bax protein, cleaved-PARP1 and cleaved-caspase 3/9. Further investigation showed that GA down-regulated the levels of PI3K, p-AKT and p-mTOR, while promoted PTEN expression in ESCC cells. Taken together, we provided the first demonstration that GA exerts anti-tumor effects on ESCC cells presumably through regulating PTEN-PI3K-AKT-mTORpathway, suggestive of a therapeutic potential for ESCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...