Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
1.
J Biol Chem ; 299(9): 105126, 2023 09.
Article in English | MEDLINE | ID: mdl-37543362

ABSTRACT

Oxidative stress triggered by aging, radiation, or inflammation impairs ovarian function by inducing granulosa cell (GC) apoptosis. However, the mechanism inducing GC apoptosis has not been characterized. Here, we found that ovarian GCs from aging patients showed increased oxidative stress, enhanced reactive oxygen species activity, and significantly decreased expression of the known antiapoptotic factor sphingosine-1-phosphate/sphingosine kinase 1 (SPHK1) in GCs. Interestingly, the expression of Krüppel-like factor 12 (KLF12) was significantly increased in the ovarian GCs of aging patients. Furthermore, we determined that KLF12 was significantly upregulated in hydrogen peroxide-treated GCs and a 3-nitropropionic acid-induced in vivo model of ovarian oxidative stress. This phenotype was further confirmed to result from inhibition of SPHK1 by KLF12. Interestingly, when endogenous KLF12 was knocked down, it rescued oxidative stress-induced apoptosis. Meanwhile, supplementation with SPHK1 partially reversed oxidative stress-induced apoptosis. However, this function was lost in SPHK1 with deletion of the binding region to the KLF12 promoter. SPHK1 reversed apoptosis caused by hydrogen peroxide-KLF12 overexpression, a result further confirmed in an in vitro ovarian culture model and an in vivo 3-nitropropionic acid-induced ovarian oxidative stress model. Overall, our study reveals that KLF12 is involved in regulating apoptosis induced by oxidative stress in aging ovarian GCs and that sphingosine-1-phosphate/SPHK1 can rescue GC apoptosis by interacting with KLF12 in negative feedback.


Subject(s)
Aging , Apoptosis , Granulosa Cells , Hydrogen Peroxide , Kruppel-Like Transcription Factors , Lysophospholipids , Phosphotransferases (Alcohol Group Acceptor) , Sphingosine , Female , Humans , Aging/metabolism , Feedback, Physiological , Granulosa Cells/drug effects , Granulosa Cells/metabolism , Hydrogen Peroxide/pharmacology , In Vitro Techniques , Kruppel-Like Transcription Factors/antagonists & inhibitors , Kruppel-Like Transcription Factors/biosynthesis , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Lysophospholipids/biosynthesis , Lysophospholipids/metabolism , Organ Culture Techniques , Oxidative Stress/drug effects , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Promoter Regions, Genetic , Sphingosine/biosynthesis , Sphingosine/metabolism , Reactive Oxygen Species/metabolism
2.
Dev Cell ; 58(21): 2376-2392.e6, 2023 11 06.
Article in English | MEDLINE | ID: mdl-37643613

ABSTRACT

Embryo implantation requires temporospatial maternal-embryonic dialog. Using single-cell RNA sequencing for the uterus from 2.5 to 4.5 days post-coitum (DPC) and bulk sequencing for the corresponding embryos of 3.5 and 4.0 DPC pregnant mice, we found that estrogen-responsive luminal epithelial cells (EECs) functionally differentiated into adhesive epithelial cells (AECs) and supporting epithelial cells (SECs), promoted by progesterone. Along with maternal signals, embryonic Pdgfa and Efna3/4 signaling activated AECs and SECs, respectively, enhancing the attachment of embryos to the endometrium and furthering embryo development. This differentiation process was largely conserved between humans and mice. Notably, the developmental defects of SOX9-positive human endometrial epithelial cells (similar to mouse EEC) were related to thin endometrium, whereas functional defects of SEC-similar unciliated epithelial cells were related to recurrent implantation failure (RIF). Our findings provide insights into endometrial luminal epithelial cell development directed by maternal and embryonic signaling, which is crucial for endometrial receptivity.


Subject(s)
Embryo Implantation , Epithelial Cells , Pregnancy , Female , Humans , Animals , Mice , Embryo Implantation/genetics , Embryonic Development , Endometrium/physiology , Cell Differentiation
3.
Cancer Lett ; 568: 216259, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37279851

ABSTRACT

Hepatocellular carcinoma (HCC) is an aggressive malignancy with few effective treatment options. Lenvatinib is the first-line therapy for HCC but has only limited clinical benefit. Here, we explored the role and mechanism of the WD repeat domain 4 (WDR4) in lenvatinib resistance to improve clinical benefit. We found that lenvatinib-resistant HCC tissues/cells exhibited increased the N7-methylguanosine (m7G) modification and WDR4 expression. By a gain/loss of function experiment, we showed that WDR4 promoted HCC lenvatinib resistance and tumor progress both in vitro and in vivo. By proteomics analysis and RNA immunoprecipitation PCR, we found that tripartite motif protein 28 (trim28) was an important WDR4 target gene. WDR4 promoted TRIM28 expression, further affected target genes expression, and thus increased cell-acquired stemness and lenvatinib resistance. Clinical tissue data showed that TRIM28 expression was correlated with WDR4 levels, and the expression of both was positively correlated with poor prognosis. Our study provides new insight into the role of WDR4, suggesting a potential therapeutic target to enhance the lenvatinib sensitivity of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Quinolines , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Phenylurea Compounds/pharmacology , Phenylurea Compounds/therapeutic use , Quinolines/pharmacology , Cell Line, Tumor , GTP-Binding Proteins , Tripartite Motif-Containing Protein 28
4.
Cell Discov ; 9(1): 25, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36878933

ABSTRACT

Hepatocellular carcinoma (HCC) is an immunotherapy-resistant malignancy characterized by high cellular heterogeneity. The diversity of cell types and the interplay between tumor and non-tumor cells remain to be clarified. Single cell RNA sequencing of human and mouse HCC tumors revealed heterogeneity of cancer-associated fibroblast (CAF). Cross-species analysis determined the prominent CD36+ CAFs exhibited high-level lipid metabolism and expression of macrophage migration inhibitory factor (MIF). Lineage-tracing assays showed CD36+CAFs were derived from hepatic stellate cells. Furthermore, CD36 mediated oxidized LDL uptake-dependent MIF expression via lipid peroxidation/p38/CEBPs axis in CD36+ CAFs, which recruited CD33+myeloid-derived suppressor cells (MDSCs) in MIF- and CD74-dependent manner. Co-implantation of CD36+ CAFs with HCC cells promotes HCC progression in vivo. Finally, CD36 inhibitor synergizes with anti-PD-1 immunotherapy by restoring antitumor T-cell responses in HCC. Our work underscores the importance of elucidating the function of specific CAF subset in understanding the interplay between the tumor microenvironment and immune system.

5.
Reprod Biomed Online ; 45(5): 858-866, 2022 11.
Article in English | MEDLINE | ID: mdl-36210273

ABSTRACT

RESEARCH QUESTION: What are the potential clinical benefits of embryo culture and assessment in a time-lapse incubator compared with a standard incubator using static assessment? DESIGN: This large multicentre, single-blinded, randomized controlled study included 1224 participants randomly assigned (1:1) to the time-lapse or standard incubator group. In all patients one or two embryos were transferred on day 3. The primary outcome was the implantation rate in the first embryo transfer cycle. Secondary outcomes included the cumulative implantation rate, live birth rate in the first embryo transfer cycle and cumulative live birth rate. RESULTS: Among 1224 participants recruited, 1182 underwent embryo transfer. The number of successfully implanted embryos in the first transfer cycle was significantly higher in the time-lapse incubator group (time-lapse group: 52.35%, standard incubator group: 47.11%, P = 0.014). The implantation rate in the first embryo transfer cycle was still significantly higher in the time-lapse group than the standard incubator group after adjusting for age, body mass index, medical centre and embryo status (relative risk 1.11, 95% confidence interval 1.02-1.20, P = 0.020). However, the cumulative implantation rate, live birth rate in the first embryo transfer cycle and cumulative live birth rate were not statistically different between the groups. CONCLUSIONS: The implantation rate in the first embryo transfer cycle was significantly improved in the time-lapse group, but the effect of the time-lapse system on the cumulative implantation rate or cumulative live birth rate was not significant. The embryo assessment method offered by time-lapse systems rather than an undisturbed environment may play an important role in improving the implantation rate in the first embryo transfer cycle. These results are only applicable to young patients.


Subject(s)
Embryo Culture Techniques , Incubators , Humans , Pregnancy , Female , Time-Lapse Imaging , Embryo Implantation , Embryo Transfer/methods , Pregnancy Rate , Live Birth , Fertilization in Vitro
6.
J Biol Chem ; 298(5): 101818, 2022 05.
Article in English | MEDLINE | ID: mdl-35278432

ABSTRACT

Gonadal white adipose tissue (gWAT) can regulate gametogenesis via modulation of neuroendocrine signaling. However, the effect of gWAT on the local microenvironment of the gonad was largely unknown. Herein, we ruled out that gWAT had a neuroendocrine effect on gonad function through a unilateral lipectomy strategy, in which cutting off epididymal white adipose tissue could reduce seminiferous tubule thickness and decrease sperm counts only in the adjacent testis and epididymis of the affected gonad. Consistent with the results in males, in females, ovary mass was similarly decreased by lipectomy. We determined that the defects in spermatogenesis were mainly caused by augmented apoptosis and decreased proliferation of germ cells. Transcriptome analysis suggested that lipectomy could disrupt immune privilege and activate immune responses in both the testis and ovary on the side of the lipectomy. In addition, lipidomics analysis in the testis showed that the levels of lipid metabolites such as free carnitine were elevated, whereas the levels of glycerophospholipids such as phosphatidylcholines and phosphatidylethanolamines were decreased, which indicated that the metabolic niche was also altered. Finally, we show that supplementation of phosphatidylcholine and phosphatidylethanolamine could partially rescue the observed phenotype. Collectively, our findings suggest that gWAT is important for gonad function by not only affecting whole-body homeostasis but also via maintaining local metabolic and immune niches.


Subject(s)
Adipose Tissue, White , Gonads , Adipose Tissue/metabolism , Adipose Tissue, White/metabolism , Animals , Epididymis , Female , Male , Mice , Spermatogenesis , Testis/metabolism
7.
Reprod Dev Med ; 6(3): 138-143, 2022 Sep.
Article in English | MEDLINE | ID: mdl-37521529

ABSTRACT

The impact of coronavirus disease 2019 (COVID-19) on endometriosis (EM) is currently unclear. Here, we aimed to describe the potential influence of COVID-19 on the pathogenesis, clinical symptoms, and treatment of EM. The cytokine storm caused by COVID-19 may induce the occurrence and progression of EM, and immunosuppression of COVID-19 may help the ectopic endometrium escape from immune clearance. Consequently, the forced social isolation and the cancelation of non-emergency medical treatment during the COVID-19 pandemic aggravate anxiety and psychological pressure, which can aggravate the symptoms related to EM and delay routine medical services.

8.
Asian J Androl ; 24(4): 367-372, 2022.
Article in English | MEDLINE | ID: mdl-34708718

ABSTRACT

The present study aimed to evaluate the clinical outcomes of magnetic-activated cell sorting (MACS) in sperm preparation for male subjects with a sperm DNA fragmentation index (DFI) ≥30%. A total of 86 patients who had undergone their first long-term long protocol were selected. The protocol involved in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) cycles, and the patients were divided into the MACS or control groups. The MACS group included sperm samples analyzed with MACS that were combined with density gradient centrifugation (DGC) and the swim-up (SU) technique (n = 39), and the control group included sperm samples prepared using standard techniques (DGC and SU; n = 41). No differences were noted with regard to basic clinical characteristics, number of oocytes retrieved, normal fertilization rate, cleavage rate, or transplantable embryo rate between the two groups in IVF/ICSI. In addition, the clinical pregnancy and implantation rates of the first embryo transfer cycles indicated no significant differences between the two groups. However, there was a tendency to improve the live birth rate (LBR) of the first embryo transfer cycle (63.2% vs 53.9%) and the cumulative LBR (79.5% vs 70.7%) in the MACS group compared with the control group. Moreover, the number of transferred embryos (mean ± standard deviation [s.d.]: 1.7 ± 0.7 vs 2.3 ± 1.6) and the transfer number of each retrieved cycle (mean ± s.d.: 1.2 ± 0.5 vs 1.6 ± 0.8) were significantly lower in the MACS group than those in the control group. Thus, the selection of nonapoptotic spermatozoa by MACS for higher sperm DFI could improve assisted reproductive clinical outcomes.


Subject(s)
Birth Rate , Sperm Injections, Intracytoplasmic , DNA Fragmentation , Female , Fertilization in Vitro/methods , Humans , Magnetic Phenomena , Male , Pregnancy , Pregnancy Rate , Semen , Sperm Injections, Intracytoplasmic/methods , Spermatozoa
9.
Mol Oncol ; 16(2): 549-561, 2022 01.
Article in English | MEDLINE | ID: mdl-34543520

ABSTRACT

We studied the value of circulating tumor DNA (ctDNA) in predicting early postoperative tumor recurrence and monitoring tumor burden in patients with hepatocellular carcinoma (HCC). Plasma-free DNA, germline DNA, and tissue DNA were isolated from 41 patients with HCC. Serial ctDNAs were analyzed by next-generation sequencing before and after operation. Whole-exome sequencing was used to detect the DNA of HCC and adjacent tissues. In total, 47 gene mutations were identified in the ctDNA of the 41 patients analyzed before surgery. ctDNA was detected in 63.4% and 46% of the patient plasma pre- and postoperation, respectively. The preoperative ctDNA positivity rate was significantly lower in the nonrecurrence group than in the recurrence group. With a median follow-up of 17.7 months, nine patients (22%) experienced tumor recurrence. ctDNA positivity at two time-points was associated with significantly shorter recurrence-free survival (RFS). Tumors with NRAS, NEF2L2, and MET mutations had significantly shorter times to recurrence than those without mutations and showed high recurrence prediction performance by machine learning. Multivariate analyses showed that the median variant allele frequency (VAF) of mutations in preoperative ctDNA was a strong independent predictor of RFS. ctDNA is a real-time monitoring indicator that can accurately reflect tumor burden. The median VAF of baseline ctDNA is a strong independent predictor of RFS in individuals with HCC.


Subject(s)
Carcinoma, Hepatocellular/pathology , Circulating Tumor DNA/blood , Liver Neoplasms/pathology , Neoplasm Recurrence, Local , Carcinoma, Hepatocellular/genetics , Female , Gene Frequency , Humans , Liver Neoplasms/genetics , Male , Middle Aged , Prospective Studies
10.
J Mol Cell Biol ; 13(2): 116-127, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33340314

ABSTRACT

Dystocia is a serious problem for pregnant women, and it increases the cesarean section rate. Although uterine dysfunction has an unknown etiology, it is responsible for cesarean delivery and clinical dystocia, resulting in neonatal morbidity and mortality; thus, there is an urgent need for novel therapeutic agents. Previous studies indicated that statins, which inhibit the mevalonate (MVA) pathway of cholesterol synthesis, can reduce the incidence of preterm birth, but the safety of statins for pregnant women has not been thoroughly evaluated. Therefore, to unambiguously examine the function of the MVA pathway in pregnancy and delivery, we employed a genetic approach by using myometrial cell-specific deletion of geranylgeranyl pyrophosphate synthase (Ggps1) mice. We found that Ggps1 deficiency in myometrial cells caused impaired uterine contractions, resulting in disrupted embryonic placing and dystocia. Studies of the underlying mechanism suggested that Ggps1 is required for uterine contractions to ensure successful parturition by regulating RhoA prenylation to activate the RhoA/Rock2/p-MLC pathway. Our work indicates that perturbing the MVA pathway might result in problems during delivery for pregnant females, but modifying protein prenylation with supplementary farnesyl pyrophosphate or geranylgeranyl pyrophosphate might be a strategy to avoid side effects.


Subject(s)
Dystocia/etiology , Dystocia/physiopathology , Farnesyltranstransferase/deficiency , Genetic Predisposition to Disease , Multienzyme Complexes/deficiency , Uterine Contraction/genetics , Animals , Biomarkers , Disease Models, Animal , Dystocia/metabolism , Farnesyltranstransferase/metabolism , Female , Genetic Association Studies , Granulosa Cells/cytology , Granulosa Cells/metabolism , Infertility/genetics , Mice , Mice, Knockout , Multienzyme Complexes/metabolism , Organogenesis/genetics , Ovarian Follicle/growth & development , Ovarian Follicle/metabolism , Phenotype , Pregnancy , Protein Binding , Signal Transduction , Uterus/embryology , Uterus/metabolism , Uterus/physiopathology , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism
11.
J Cancer ; 11(9): 2476-2484, 2020.
Article in English | MEDLINE | ID: mdl-32201518

ABSTRACT

There are some controversies about the involvement of microRNA (miR)-19a-3p in hepatocellular carcinoma (HCC) biology, even though many studies have shown that it plays an important role in cancer. In this study, we found that miR-19a-3p is usually overexpressed in HCC tissues compared with corresponding peritumorous tissues, and its expression was associated with tumor size and poor overall survival. MiR-19a-3p promoted cell proliferation significantly, and more cells were found in the S phase. In vivo, miR-19a-3p promoted liver tumor growth, and more HCC cells were found in the active cell cycle. Sequencing and bioinformatics analysis predicted that PIK3IP1 is a likely target gene of miR-19a-3p, and we next confirmed it by luciferase and rescue assays. Altogether, our data showed an important role of PIK3IP1 downregulation by miR-19a-3p in HCC progression, and the miR-19a-3p-PIK3IP1-AKT pathway may be a potential therapeutic target.

12.
Eur J Immunol ; 50(2): 160-169, 2020 02.
Article in English | MEDLINE | ID: mdl-31953958

ABSTRACT

Regulatory T (Treg) cells are a specialized subpopulation of T cells that plays critical roles in the maintenance of immune homeostasis. Although efforts have been done, their role in human pregnancy is not fully understood. Numerous studies reported the presence of Treg cells throughout gestation by promoting maternal-fetal tolerance and fetal development. Furthermore, Treg population is heterogeneous as it is expressing different immune checkpoint molecules favoring immune suppressive function. Therefore, better understanding of the heterogeneity and function of Treg cells during pregnancy is critical for an effective immune intervention. Latest evidence has shown that several immune checkpoint molecules are closely associated with pregnancy outcome via multiple inhibitory mechanisms. Majority of these studies demonstrated the modulatory effects of immune checkpoint molecules on effector T-cell immunity, but their effects on Treg activation and function are still an enigma. In this review, we emphasize the potential influence of multiple immune checkpoint molecules, including CTLA-4, PD-1, Tim-3, LAG-3, and TIGIT, either in membrane or soluble form, on the function of decidual and peripheral Treg cells during pregnancy. Additionally, we discuss the promising future of targeting Treg cells via immune checkpoint molecules for pregnancy maintenance and prevention of complicated pregnancies.


Subject(s)
T-Lymphocytes, Regulatory/immunology , Animals , Antigens/immunology , Female , Humans , Immune Tolerance/immunology , Pregnancy
13.
Carcinogenesis ; 41(7): 950-960, 2020 07 14.
Article in English | MEDLINE | ID: mdl-31587040

ABSTRACT

Previous research suggests that far upstream element-binding protein 1 (FUBP1) plays an important role in various tumors including epatocellular carcinoma (HCC). However, the role of FUBP1 in liver cancer remains controversial, and the regulatory pathway by FUBP1 awaits to be determined. This study aims to identify the role of FUBP1 in HCC progression. Our result shows that the high level of FUBP1 expression in HCC predicts poor prognosis after surgery. Overexpression of FUBP1 promotes HCC proliferation, invasion, and metastasis by activating transforming growth factor-ß (TGF-ß)/Smad pathway and enhancing epithelial-mesenchymal transition (EMT) in vitro and in vivo. Inhibitor of Thrombospondin-1 (LSKL) could inhibit HCC proliferation and invasion in vitro and in vivo by blocking the activation of TGF-ß/Smad pathway mediated by thrombospondin-1 (THBS1). Our study identified the critical role of FUBP1-THBS1-TGF-ß signaling axis in HCC and provides potentially new therapeutic modalities in HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , DNA-Binding Proteins/genetics , Liver Neoplasms/genetics , RNA-Binding Proteins/genetics , Thrombospondin 1/genetics , Transforming Growth Factor beta1/genetics , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic/drug effects , Heterografts , Humans , Liver Neoplasms/pathology , Male , Mice , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis , Peptides/pharmacology , Signal Transduction/drug effects , Smad Proteins/genetics , Thrombospondin 1/antagonists & inhibitors , Tissue Array Analysis
14.
Future Oncol ; 15(34): 3917-3934, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31729887

ABSTRACT

Aim: To elucidate the integrative combinational gene regulatory network landscape of hepatocellular carcinoma (HCC) molecular carcinogenesis from diverse background. Materials & methods: Modified gene regulatory network analysis was used to prioritize differentially regulated genes and links. Integrative comparisons using bioinformatics methods were applied to identify potential critical molecules and pathways in HCC with different backgrounds. Results: E2F1 with its surrounding regulatory links were identified to play different key roles in the HCC risk factor dysregulation mechanisms. Hsa-mir-19a was identified as showed different effects in the three HCC differential regulation networks, and showed vital regulatory role in HBV-related HCC. Conclusion: We describe in detail the regulatory networks involved in HCC with different backgrounds. E2F1 may serve as a universal target for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular/genetics , E2F1 Transcription Factor/metabolism , Gene Regulatory Networks , Liver Neoplasms/genetics , MicroRNAs/genetics , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/mortality , Carcinoma, Hepatocellular/virology , Computational Biology , Datasets as Topic , Disease-Free Survival , E2F1 Transcription Factor/antagonists & inhibitors , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Hepacivirus/isolation & purification , Hepacivirus/pathogenicity , Hepatitis B virus/isolation & purification , Hepatitis B virus/pathogenicity , Humans , Kaplan-Meier Estimate , Liver/pathology , Liver/virology , Liver Neoplasms/drug therapy , Liver Neoplasms/mortality , Liver Neoplasms/virology , MicroRNAs/metabolism , Prognosis
15.
Yi Chuan ; 41(9): 816-826, 2019 Sep 20.
Article in Chinese | MEDLINE | ID: mdl-31549680

ABSTRACT

Societal changes regarding the role of women have significant impacts on women's willingness and the timing of childbearing. Ovarian reserve in woman typically begins to decline at the age of 35, and it is primarily characterized by a reduction in the number of ovarian follicles and a decline in oocyte quality. The clinical diagnosis of ovarian insufficiency relies on multiple variables including changes of follicle stimulating hormone (FSH), serum anti-Müllerian hormone (AMH), inhibin B, antral follicle count, menstruation and age. It is proven that ovarian cells demonstrate dysfunction associated with aging including mitochondrial dysfunction, telomere shortening, impaired DNA repair, epigenetic changes and metabolic/energetic disorders. In this review, we introduce the clinical diagnosis and management of ovarian insufficiency. We mainly discuss the molecular mechanism and potential interventions. We are optimistic that this information and knowledge will inform the important decisions for women and society regarding childbearing.


Subject(s)
Aging , Ovary/physiopathology , Anti-Mullerian Hormone/blood , Female , Follicle Stimulating Hormone/blood , Humans , Inhibins/blood , Ovarian Follicle , Ovarian Reserve
16.
Am J Reprod Immunol ; 82(4): e13166, 2019 10.
Article in English | MEDLINE | ID: mdl-31295376

ABSTRACT

PROBLEM: During endometriosis, there is an increase in the number of dysfunctional macrophages; however, the mechanisms underlying macrophage recruitment are not well understood. The aim of the present study was to determine the role of natural killer (NK) cell-mediated secretion of chemokine (C-C motif) ligand 2 (CCL2) from endometrial stromal cells (ESCs) in the recruitment of macrophages. METHOD OF STUDY: Normal ESCs (nESC) and ectopic ESCs (eESCs) were separately co-cultured with NK cells for a macrophage chemotaxis assay, and the number of chemotactic macrophages was counted. The expression of interleukin-22 (IL-22) and IL-22 receptors was detected by ELISA and flow cytometry, respectively. eESCs were treated with 0.01, 0.1, and 1 ng/mL recombinant human IL-22 (rhIL-22) to determine the most effective concentration for stimulating CCL2 production. Following treatment with 1 ng/mL rhIL-22, secretion of CCL2 was detected from both the eESC monoculture and the eESC/NK co-culture. RESULTS: Compared with the eESC monoculture, the eESC/NK co-culture recruited a significantly higher number of chemotactic macrophages. There was also an increase in the levels of IL-22 and CCL2 secreted when eESCs were co-cultured compared with the monoculture. Treatment with rhIL-22 resulted in an increase in the levels of CCL2 secreted by eESCs, and the IL-22-induced CCL2 secretion was reversed by the IL-22 antagonist, αIL-22. Increased expression of IL-22 resulted in an increase in the number of chemotactic macrophages, but was reversed by αIL-22 and CCL2 antagonist (αCCL2). CONCLUSION: Interleukin-22 and CCL2 secretion by eESCs stimulated by NK cells contributes to the induction of macrophage recruitment and is thus implicated in the development of endometriosis.


Subject(s)
Chemokine CCL2/immunology , Endometriosis/immunology , Interleukins/immunology , Killer Cells, Natural/immunology , Macrophages/immunology , Stromal Cells/immunology , Adult , Cells, Cultured , Coculture Techniques , Endometrium/cytology , Endometrium/immunology , Female , Humans , Middle Aged , Young Adult , Interleukin-22
17.
J Exp Clin Cancer Res ; 38(1): 113, 2019 Mar 05.
Article in English | MEDLINE | ID: mdl-30836988

ABSTRACT

BACKGROUND: RING finger protein 38 (RNF38), a member of the RNF protein family, has just emerged as a vital driver of cancer progression. However, the oncogenic mechanisms of RNF38 remain unexplored. METHODS: Using frozen tumor tissue and tissue microarray from hepatocellular carcinoma (HCC) patients, we tried to probe the expression of RNF38 in HCC and its clinical value. Then the biological functions of RNF38 were analyzed in vivo and vitro. Stable isotope labeling with amino acids (SILAC) in cell culture and co-immunoprecipitation proteomic analyses were combined to reveal the potential mechanism of RNF38 in HCC progression. RESULTS: We report that RNF38 expression was markedly higher in HCC tissues than in peritumor tissues. Correspondingly, RNF38 overexpression promoted the HCC cell migration and invasion and inhibited apoptosis both in vitro and in vivo. And elevated RNF38 expression induced HCC cell epithelial-mesenchymal transition by facilitating transforming growth factor-ß (TGF-ß) signaling via ubiquitinating and degrading neuroblast differentiation-associated protein (AHNAK), a well-established inhibitor of TGF-ß signaling. Furthermore, AHNAK interference restored the HCC cell invasion and metastasis deprived by RNF38 downregulation. Clinically, elevated RNF38 and transforming growth factor beta receptor 1 (TGFBR1) expression was related to short overall survival (OS) and high cumulative recurrence rates in HCC patients. CONCLUSIONS: High levels of RNF38 promote HCC by facilitating TGF-ß signaling and are a novel marker for predicting the prognosis of HCC patients and a potential therapeutic target in HCC.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carrier Proteins/genetics , Liver Neoplasms/genetics , Membrane Proteins/genetics , Neoplasm Proteins/genetics , Receptor, Transforming Growth Factor-beta Type I/genetics , Adult , Animals , Carcinogenesis/genetics , Carcinoma, Hepatocellular/pathology , Disease-Free Survival , Epithelial-Mesenchymal Transition , Female , Gene Expression Regulation, Neoplastic , Humans , Isotope Labeling , Liver Neoplasms/pathology , Male , Mice , Middle Aged , Prognosis , Signal Transduction , Transforming Growth Factor beta/genetics , Xenograft Model Antitumor Assays
18.
Reproduction ; 157(3): 273-282, 2019 03.
Article in English | MEDLINE | ID: mdl-30620718

ABSTRACT

Decidualization renders the endometrium transiently receptive to an implanting blastocyst although the underlying mechanisms remain incompletely understood. The aim of this study was to determine the role of chemokine CXCL16 and its receptor CXCR6 in the decidualization during pregnancy. Here, the expression of CXCL16 was investigated in endometrial tissues, decidua and placenta in this study. Compared with endometrial tissue, protein expression of CXCL16 was significantly higher in tissues from the fertile control samples, especially in villus. Meanwhile, the primary trophoblast cells and decidual stromal cells (DSCs) secreted more CXCL16 and expressed higher CXCR6 compared to endometrial stromal cells (ESCs) in vitro. Stimulation with the inducer of decidualization (8-bromoadenosine 3',5'-cyclic with medroxyprogesterone acetate, 8-Br-cAMP plus MPA) significantly upregulated the expression of CXCL16 and CXCR6 in ESCs in vitro. After treatment with exogenous recombinant human CXCL16 (rhCXCL16) or trophoblast-secreted CXLC16, decidualised ESCs showed a significant decidual response, mainly characterised by increased prolactin (PRL) secretion. Simultaneously, PI3K/PDK1/AKT/Cyclin D1 pathway in decidualised ESCs were activated by rhCXCL16, and AKT inhibitor GS 690693 abolished the PRL secretion of ESCs that was triggered by rhCXCL16. Finally, the impaired CXCL16/CXCR6 expression could be observed at the maternal-foetal interface from patients who have experienced spontaneous abortion. This study suggests that the CXCL16/CXCR6 axis contributes to the progression of ESC decidualization by activating PI3K/PDK1/AKT/Cyclin D1 pathway. It unveils a new paradigm at the maternal-foetal interface in which CXCL16 is an initiator for the molecular crosstalk that enhances decidualization of ESCs.


Subject(s)
Cell Differentiation , Chemokine CXCL16/metabolism , Decidua/cytology , Endometrium/cytology , Proto-Oncogene Proteins c-akt/metabolism , Receptors, CXCR6/metabolism , Transcription Factors/metabolism , Adult , Cells, Cultured , Decidua/metabolism , Endometrium/metabolism , Female , Humans , Phosphorylation , Pregnancy , Pregnancy Trimester, First , Stromal Cells/cytology , Stromal Cells/metabolism , Trophoblasts/cytology , Trophoblasts/metabolism
19.
J Cell Biochem ; 120(4): 6035-6045, 2019 04.
Article in English | MEDLINE | ID: mdl-30368883

ABSTRACT

BACKGROUND: Prognosis of hepatocellular carcinoma (HCC) remains poor due to high recurrence rate and ineffective treatment options, highlighting the need to better understand the mechanism of recurrence and metastasis in HCC. METHODS: We first collected messenger RNA (mRNA) expression data from 442 cases of HCC patients from The Cancer Genome Atlas (TCGA) database as well as 251 HCC patients from Zhongshan Hospital during 2009 and 2010 to analyze the expression pattern from tissue microarray (TMA) of baculoviral IAP repeat containing 3 (BIRC3). Then, we used BIRC3 gain-of-function (overexpression) and loss-of-function (knockdown) studies to examine the effect of BIRC3 on HCC cell proliferation and invasion. In addition, we also investigated the undying mechanism by which BIRC3 contributes to HCC tumor progression. Functionally, we also used a BIRC3-specific inhibitor AT-406 in HCC xenograft model to explore the potential therapeutic benefit of targeting BIRC3 in liver cancer. RESULTS: BIRC3 serves as a novel prognostic indicator for HCC patients undergoing curative resection. BIRC3 promotes HCC epithelial-mesenchymal transition (EMT), cell migration, and metastasis via upregulating MAP3K7, therefore, inducing ERK1/2 phosphorylation. The specific BIRC3 inhibitor AT-406 can inhibit HCC cell proliferation and reduce pulmonary metastases. CONCLUSION: BIRC3 induces tumor proliferation and metastasis in vitro and in vivo. BIRC3 may serve as a novel therapeutic target for liver cancer.


Subject(s)
Baculoviral IAP Repeat-Containing 3 Protein/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Animals , Baculoviral IAP Repeat-Containing 3 Protein/genetics , Biomarkers, Tumor/metabolism , Blotting, Western , Cell Line, Tumor , Cell Movement/genetics , Cell Movement/physiology , Cell Proliferation/genetics , Cell Proliferation/physiology , Epithelial-Mesenchymal Transition/genetics , Epithelial-Mesenchymal Transition/physiology , Female , Gene Expression Regulation, Neoplastic/genetics , Gene Expression Regulation, Neoplastic/physiology , Humans , Immunohistochemistry , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Real-Time Polymerase Chain Reaction , Tissue Array Analysis
20.
Oncol Lett ; 15(1): 467-474, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29387230

ABSTRACT

Hypoxia is a critical aspect of tumor biology and has been associated with poor prognosis and resistance to traditional therapy. In the present study, differentially expressed genes and microRNAs (miRNAs/miRs) were screened for in the hepatocellular carcinoma (HCC) cell line Huh7 under hypoxic conditions. On the basis of microarray data, 11,508 mRNAs and 58 miRNAs exhibiting ≥1.5-fold change in expression under hypoxic conditions were identified. Gene Ontology (GO) and Kyoto Encyclopedia or Genes and Genomes pathway analysis revealed that the differentially expressed genes were primarily involved in cell cycle regulation, cell division, transcription and G-protein-coupled receptor signaling pathways. Using the TargetScan and miRanda software packages with the miRNA-mRNA negative expression network, differentially expressed miRNA targets were predicted. GO analysis revealed that the primary function of these miRNAs was to regulate transcription and phosphorylation. The miRNA-mRNA networks for transcription and phosphorylation were analyzed. Network analysis revealed that the key miRNAs in these networks were miR-19a, miR-34a, miR-29a, mir-196a, miR-25 and miR-1207, whose potential gene targets include DNA-binding proteins, zinc-finger proteins and transcription factors. Certain protein kinases, includingmitogen-activated protein kinase (MAPK) 1, MAPK kinase kinase4 and cyclin-dependent kinase 18, were also revealed to be present in the network. In hypoxic HCC tissue, levels of several key miRNAs implicated in the network analyses (miR-19a, miR-34a, miR-25 and miR-1207) were revealed to exhibit increased expression levels compared with the surrounding tissue. The results of the present study provide evidence that miRNAs serve an important function in transcription and phosphorylation in the hypoxic response of HCC cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...