Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Med Chem ; 67(10): 7836-7858, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38695063

ABSTRACT

The approval of venetoclax, a B-cell lymphoma-2 (Bcl-2) selective inhibitor, for the treatment of chronic lymphocytic leukemia demonstrated that the antiapoptotic protein Bcl-2 is a druggable target for B-cell malignancies. However, venetoclax's limited potency cannot produce a strong, durable clinical benefit in other Bcl-2-mediated malignancies (e.g., diffuse large B-cell lymphomas) and multiple recurrent Bcl-2 mutations (e.g., G101V) have been reported to mediate resistance to venetoclax after long-term treatment. Herein, we described novel Bcl-2 inhibitors with increased potency for both wild-type (WT) and mutant Bcl-2. Comprehensive structure optimization led to the clinical candidate BGB-11417 (compound 12e, sonrotoclax), which exhibits strong in vitro and in vivo inhibitory activity against both WT Bcl-2 and the G101V mutant, as well as excellent selectivity over Bcl-xL without obvious cytochrome P450 inhibition. Currently, BGB-11417 is undergoing phase II/III clinical assessments as monotherapy and combination treatment.


Subject(s)
Antineoplastic Agents , Mutation , Proto-Oncogene Proteins c-bcl-2 , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Humans , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Structure-Activity Relationship , Mice , Cell Line, Tumor , Sulfonamides/pharmacology , Sulfonamides/chemistry , Rats , Drug Discovery
2.
Blood ; 143(18): 1825-1836, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38211332

ABSTRACT

ABSTRACT: Venetoclax, the first-generation inhibitor of the apoptosis regulator B-cell lymphoma 2 (BCL2), disrupts the interaction between BCL2 and proapoptotic proteins, promoting the apoptosis in malignant cells. Venetoclax is the mainstay of therapy for relapsed chronic lymphocytic leukemia and is under investigation in multiple clinical trials for the treatment of various cancers. Although venetoclax treatment can result in high rates of durable remission, relapse has been widely observed, indicating the emergence of drug resistance. The G101V mutation in BCL2 is frequently observed in patients who relapsed treated with venetoclax and sufficient to confer resistance to venetoclax by interfering with compound binding. Therefore, the development of next-generation BCL2 inhibitors to overcome drug resistance is urgently needed. In this study, we discovered that sonrotoclax, a potent and selective BCL2 inhibitor, demonstrates stronger cytotoxic activity in various hematologic cancer cells and more profound tumor growth inhibition in multiple hematologic tumor models than venetoclax. Notably, sonrotoclax effectively inhibits venetoclax-resistant BCL2 variants, such as G101V. The crystal structures of wild-type BCL2/BCL2 G101V in complex with sonrotoclax revealed that sonrotoclax adopts a novel binding mode within the P2 pocket of BCL2 and could explain why sonrotoclax maintains stronger potency than venetoclax against the G101V mutant. In summary, sonrotoclax emerges as a potential second-generation BCL2 inhibitor for the treatment of hematologic malignancies with the potential to overcome BCL2 mutation-induced venetoclax resistance. Sonrotoclax is currently under investigation in multiple clinical trials.


Subject(s)
Antineoplastic Agents , Bridged Bicyclo Compounds, Heterocyclic , Drug Resistance, Neoplasm , Hematologic Neoplasms , Proto-Oncogene Proteins c-bcl-2 , Sulfonamides , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Humans , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Animals , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Mice , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Xenograft Model Antitumor Assays , Cell Line, Tumor , Mutation , Apoptosis/drug effects
3.
Small ; : e2307250, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38196305

ABSTRACT

A novel all-solid-state thin-film lithium-ion battery (LIB) is presented to address the trade-off issue between the specific capacity and stabilities in a conventional LIB. Different from the conventional one, this LIB device consists of two same LIB components located at the front and back surfaces of the substrate, respectively. These two LIB components form parallel connection by using the conductive through vias distributed in the substrate. Compared with the conventional one, this LIB device doubles the areal specific capacity. More importantly, due to the stress-compensation effect, this device effectively suppresses the stress induced by its volume changes resulting from the lithiation/delithiation processes and thermal expansion. Consequently, this device shows good cycling and thermal stabilities even when working at an industrial-grade high temperature of 125 °C. To further improve the specific capacity without sacrificing the stabilities, a 3D stacked LIB is successfully realized by using this LIB device as the cell, in which each cell is parallelly connected by using the above-mentioned conductive through vias. This 3D stacked LIB is experimentally demonstrated to obtain high specific capacity (79.9 µAh cm-2 ) and good stabilities (69.3% of retained capacity after 100 cycles at 125 °C) simultaneously.

4.
Front Med ; 17(6): 1170-1185, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37747585

ABSTRACT

OX40 is a costimulatory receptor that is expressed primarily on activated CD4+, CD8+, and regulatory T cells. The ligation of OX40 to its sole ligand OX40L potentiates T cell expansion, differentiation, and activation and also promotes dendritic cells to mature to enhance their cytokine production. Therefore, the use of agonistic anti-OX40 antibodies for cancer immunotherapy has gained great interest. However, most of the agonistic anti-OX40 antibodies in the clinic are OX40L-competitive and show limited efficacy. Here, we discovered that BGB-A445, a non-ligand-competitive agonistic anti-OX40 antibody currently under clinical investigation, induced optimal T cell activation without impairing dendritic cell function. In addition, BGB-A445 dose-dependently and significantly depleted regulatory T cells in vitro and in vivo via antibody-dependent cellular cytotoxicity. In the MC38 syngeneic model established in humanized OX40 knock-in mice, BGB-A445 demonstrated robust and dose-dependent antitumor efficacy, whereas the ligand-competitive anti-OX40 antibody showed antitumor efficacy characterized by a hook effect. Furthermore, BGB-A445 demonstrated a strong combination antitumor effect with an anti-PD-1 antibody. Taken together, our findings show that BGB-A445, which does not block OX40-OX40L interaction in contrast to clinical-stage anti-OX40 antibodies, shows superior immune-stimulating effects and antitumor efficacy and thus warrants further clinical investigation.


Subject(s)
Antineoplastic Agents , Receptors, Tumor Necrosis Factor , Mice , Animals , Receptors, Tumor Necrosis Factor/physiology , Receptors, OX40 , Membrane Glycoproteins , Ligands , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/pharmacology
5.
MAbs ; 15(1): 2215364, 2023.
Article in English | MEDLINE | ID: mdl-37229604

ABSTRACT

Aspartic acid (Asp) isomerization is a spontaneous non-enzymatic post-translation modification causing a change in the structure of the protein backbone, which is commonly observed in therapeutic antibodies during manufacturing and storage. The Asps in Asp-Gly (DG), Asp-Ser (DS), and Asp-Thr (DT) motifs in the structurally flexible regions, such as complementarity-determining regions (CDRs) in antibodies, are often found to have high rate of isomerization, and they are considered "hot spots" in antibodies. In contrast, the Asp-His (DH) motif is usually considered a silent spot with low isomerization propensity. However, in monoclonal antibody mAb-a, the isomerization rate of an Asp residue, Asp55, in the aspartic acid-histidine-lysine (DHK) motif present in CDRH2 was found to be unexpectedly high. By determining the conformation of DHK motif in the crystal structure of mAb-a, we found that the Cgamma of the Asp side chain carbonyl group and the back bone amide nitrogen of successor His were in proximal contact, which facilitates the formation of succinimide intermediate, and the +2 Lys played an important role in stabilizing such conformation. The contributing roles of the His and Lys residues in DHK motif were also verified using a series of synthetic peptides. This study identified a novel Asp isomerization hot spot, DHK, and the structural-based molecular mechanism was revealed. When 20% Asp55 isomerization in this DHK motif occurred in mAb-a, antigen binding activity reduced to 54%, but the pharmacokinetics in rat was not affected significantly. Although Asp isomerization of DHK motif in CDR does not appear to have a negative impact on PK, DHK motifs in the CDRs of antibody therapeutics should be removed, considering the high propensity of isomerization and impact on antibody activity and stability.


Subject(s)
Aspartic Acid , Peptides , Animals , Rats , Isomerism , Aspartic Acid/chemistry , Peptides/chemistry , Complementarity Determining Regions/chemistry , Antibodies, Monoclonal/chemistry
6.
J Med Chem ; 66(6): 4025-4044, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36912866

ABSTRACT

Bruton's tyrosine kinase (BTK) plays an essential role in B-cell receptor (BCR)-mediated signaling as well as the downstream signaling pathway for Fc receptors (FcRs). Targeting BTK for B-cell malignancies by interfering with BCR signaling has been clinically validated by some covalent inhibitors, but suboptimal kinase selectivity may lead to some adverse effects, which also makes the clinical development of autoimmune disease therapy more challenging. The structure-activity relationship (SAR) starting from zanubrutinib (BGB-3111) leads to a series of highly selective BTK inhibitors, in which BGB-8035 is located in the ATP binding pocket and has similar hinge binding to ATP but exhibits high selectivity over other kinases (EGFR, Tec, etc.). With an excellent pharmacokinetic profile as well as demonstrated efficacy studies in oncology and autoimmune disease models, BGB-8035 has been declared a preclinical candidate. However, BGB-8035 showed an inferior toxicity profile compared to that of BGB-3111.


Subject(s)
Autoimmune Diseases , Neoplasms , Humans , Agammaglobulinaemia Tyrosine Kinase , Structure-Activity Relationship , Autoimmune Diseases/drug therapy , Neoplasms/drug therapy , Adenosine Triphosphate , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/pharmacokinetics
7.
FEBS Open Bio ; 11(3): 782-792, 2021 03.
Article in English | MEDLINE | ID: mdl-33527708

ABSTRACT

Programmed cell death protein 1 (PD-1), an immune checkpoint receptor expressed by activated T, B, and NK cells, is a well-known target for cancer immunotherapy. Tislelizumab (BGB-A317) is an anti-PD-1 antibody that has recently been approved for treatment of Hodgkin's lymphoma and urothelial carcinoma. Here, we show that tislelizumab displayed remarkable antitumor efficacy in a B16F10/GM-CSF mouse model. Structural biology and Surface plasmon resonance (SPR) analyses revealed unique epitopes of tislelizumab, and demonstrated that the CC' loop of PD-1, a region considered to be essential for binding to PD-1 ligand 1 (PD-L1) but not reported as targeted by other therapeutic antibodies, significantly contributes to the binding of tislelizumab. The binding surface of tislelizumab on PD-1 overlaps largely with that of the PD-L1. SPR analysis revealed the extremely slow dissociation rate of tislelizumab from PD-1. Both structural and functional analyses align with the observed ability of tislelizumab to completely block PD-1/PD-L1 interaction, broadening our understanding of the mechanism of action of anti-PD-1 antibodies.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Agents, Immunological/administration & dosage , Melanoma, Experimental/drug therapy , Programmed Cell Death 1 Receptor/chemistry , Programmed Cell Death 1 Receptor/genetics , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Binding Sites , Humans , Melanoma, Experimental/genetics , Mice , Mice, Transgenic , Models, Molecular , Mutation , Programmed Cell Death 1 Receptor/metabolism , Protein Binding/drug effects , Protein Conformation , Protein Domains , Surface Plasmon Resonance , Xenograft Model Antitumor Assays
8.
J Med Chem ; 62(17): 7923-7940, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31381333

ABSTRACT

Aberrant activation of Bruton's tyrosine kinase (BTK) plays an important role in pathogenesis of B-cell lymphomas, suggesting that inhibition of BTK is useful in the treatment of hematological malignancies. The discovery of a more selective on-target covalent BTK inhibitor is of high value. Herein, we disclose the discovery and preclinical characterization of a potent, selective, and irreversible BTK inhibitor as our clinical candidate by using in vitro potency, selectivity, pharmacokinetics (PK), and in vivo pharmacodynamic for prioritizing compounds. Compound BGB-3111 (31a, Zanubrutinib) demonstrates (i) potent activity against BTK and excellent selectivity over other TEC, EGFR and Src family kinases, (ii) desirable ADME, excellent in vivo pharmacodynamic in mice and efficacy in OCI-LY10 xenograft models.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Drug Discovery , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Agammaglobulinaemia Tyrosine Kinase/metabolism , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dogs , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Humans , Mice , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Models, Molecular , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Piperidines/chemical synthesis , Piperidines/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Rats , Structure-Activity Relationship
9.
Mol Pharm ; 14(10): 3568-3576, 2017 10 02.
Article in English | MEDLINE | ID: mdl-28829143

ABSTRACT

Novel "pairs" of drugs possessing pharmacological synergies could be encapsulated into polymeric micelles and exert superb therapeutic effects in vivo upon intravenous administration, with the prerequisite that the micelles remain stable. NADP(H) quinone oxidoreductase 1 (NQO1) inhibitors, such as ß-lapachone (LPC) and tanshinone IIA (THA), are structurally and pharmacologically similar molecules that are poorly water-soluble, crystallize extremely fast, and demonstrate synergistic anticancer effect when used together with paclitaxel (PTX). However, when coencapsulated with PTX in poly(ethylene glycol)-b-poly(d,l-lactic acid) (PEG-PLA) micelles, only PTX/LPC but not the PTX/THA pair yields satisfactory colloidal stability. To reveal the molecular mechanism contributing to the colloidal stability of the coencapsulated micelles, we investigated the molecular interactions of PTX/LPC and PTX/THA, through both experimental methods (crystallization kinetics, 13C NMR) and molecular dynamic simulation. We observed that PTX was capable of inhibiting LPC but not THA crystallization both in an aqueous environment and in the solid state, which could be attributed to the strong hetero-intermolecular interactions (π-π, H-bonding) between LPC and PTX, which disrupted the homo-intermolecular interactions between LPC molecules and thus formed a favorable miscible binary system. In comparison, the lack of a strong PTX/THA interaction left the strong THA/THA stacking interaction undisturbed and the fast THA crystallization tendency unrestrained. We conclude that the intermolecular interactions, i.e., the "pharmaceutical synergy", between the coencapsulated drugs critically control the colloidal stability of polymeric micelles and, therefore, should be evaluated when coencapsulated drug delivery systems are designed for optimal therapeutic benefits.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Carriers/chemistry , Drug Compounding/methods , NAD(P)H Dehydrogenase (Quinone)/antagonists & inhibitors , Abietanes/pharmacology , Chemistry, Pharmaceutical , Colloids , Crystallization , Drug Synergism , Enzyme Inhibitors , Humans , Micelles , Molecular Dynamics Simulation , Nanoparticles/chemistry , Naphthoquinones/pharmacology , Paclitaxel/pharmacology , Polyethylene Glycols/chemistry
11.
Nature ; 535(7610): 111-6, 2016 07 07.
Article in English | MEDLINE | ID: mdl-27281216

ABSTRACT

Inflammatory caspases cleave the gasdermin D (GSDMD) protein to trigger pyroptosis, a lytic form of cell death that is crucial for immune defences and diseases. GSDMD contains a functionally important gasdermin-N domain that is shared in the gasdermin family. The functional mechanism of action of gasdermin proteins is unknown. Here we show that the gasdermin-N domains of the gasdermin proteins GSDMD, GSDMA3 and GSDMA can bind membrane lipids, phosphoinositides and cardiolipin, and exhibit membrane-disrupting cytotoxicity in mammalian cells and artificially transformed bacteria. Gasdermin-N moved to the plasma membrane during pyroptosis. Purified gasdermin-N efficiently lysed phosphoinositide/cardiolipin-containing liposomes and formed pores on membranes made of artificial or natural phospholipid mixtures. Most gasdermin pores had an inner diameter of 10­14 nm and contained 16 symmetric protomers. The crystal structure of GSDMA3 showed an autoinhibited two-domain architecture that is conserved in the gasdermin family. Structure-guided mutagenesis demonstrated that the liposome-leakage and pore-forming activities of the gasdermin-N domain are required for pyroptosis. These findings reveal the mechanism for pyroptosis and provide insights into the roles of the gasdermin family in necrosis, immunity and diseases.


Subject(s)
Cell Membrane Permeability/drug effects , Proteins/antagonists & inhibitors , Proteins/chemistry , Pyroptosis , Animals , Biomarkers, Tumor/antagonists & inhibitors , Biomarkers, Tumor/chemistry , Biomarkers, Tumor/metabolism , Cardiolipins/metabolism , Caspases/metabolism , Cell Line , Cell Membrane/chemistry , Cell Membrane/drug effects , Cell Membrane/metabolism , Crystallography, X-Ray , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins , Liposomes , Membrane Lipids/metabolism , Mice , Models, Molecular , Necrosis , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/chemistry , Neoplasm Proteins/metabolism , Phosphate-Binding Proteins , Phosphatidylinositols/metabolism , Porosity/drug effects , Protein Structure, Tertiary , Proteins/metabolism , Proteins/pharmacology , Pyroptosis/drug effects , Pyroptosis/immunology
12.
PLoS Genet ; 10(10): e1004589, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25340332

ABSTRACT

Distal arthrogryposis type 2B (DA2B) is an important genetic disorder in humans. However, the mechanisms governing this disease are not clearly understood. In this study, we generated knock-in mice carrying a DA2B mutation (K175del) in troponin I type 2 (skeletal, fast) (TNNI2), which encodes a fast-twitch skeletal muscle protein. Tnni2K175del mice (referred to as DA2B mice) showed typical DA2B phenotypes, including limb abnormality and small body size. However, the current knowledge concerning TNNI2 could not explain the small body phenotype of DA2B mice. We found that Tnni2 was expressed in the osteoblasts and chondrocytes of long bone growth plates. Expression profile analysis using radii and ulnae demonstrated that Hif3a expression was significantly increased in the Tnni2K175del mice. Chromatin immunoprecipitation assays indicated that both wild-type and mutant tnni2 protein can bind to the Hif3a promoter using mouse primary osteoblasts. Moreover, we showed that the mutant tnni2 protein had a higher capacity to transactivate Hif3a than the wild-type protein. The increased amount of hif3a resulted in impairment of angiogenesis, delay in endochondral ossification, and decrease in chondrocyte differentiation and osteoblast proliferation, suggesting that hif3a counteracted hif1a-induced Vegf expression in DA2B mice. Together, our data indicated that Tnni2K175del mutation led to abnormally increased hif3a and decreased vegf in bone, which explain, at least in part, the small body size of Tnni2K175del mice. Furthermore, our findings revealed a new function of tnni2 in the regulation of bone development, and the study of gain-of-function mutation in Tnni2 in transgenic mice opens a new avenue to understand the pathological mechanism of human DA2B disorder.


Subject(s)
Arthrogryposis/genetics , Bone Development/genetics , Transcription Factors/biosynthesis , Troponin I/genetics , Animals , Apoptosis Regulatory Proteins , Arthrogryposis/physiopathology , Calcium/metabolism , Gene Expression Regulation , Gene Knock-In Techniques , Humans , Mice , Muscle Contraction/genetics , Mutation , Repressor Proteins , Sarcomeres/pathology , Transcription Factors/genetics , Vascular Endothelial Growth Factor A/biosynthesis
13.
Blood ; 124(6): 924-35, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24899623

ABSTRACT

A better understanding of the interaction between extrinsic factors and surface receptors on stem cells will greatly benefit stem cell research and applications. Recently, we showed that several angiopoietin-like proteins (Angptls) bind and activate the immune inhibitory receptor human leukocyte immunoglobulin (Ig)-like receptor B2 (LILRB2) to support ex vivo expansion of hematopoietic stem cells (HSCs) and leukemia development. However, the molecular basis for the interaction between Angptls and LILRB2 was unclear. Here, we demonstrate that Angptl2 expressed in mammalian cells forms high-molecular-weight species and that ligand multimerization is required for activation of LILRB2 for downstream signaling. A novel motif in the first and fourth Ig domains of LILRB2 was identified that is necessary for the receptor to be bound and activated by Angptl2. The binding of Angptl2 to LILRB2 is more potent than and not completely overlapped with the binding of another ligand, HLA-G. Immobilized anti-LILRB2 antibodies induce a more potent activation of LILRB2 than Angptl2, and we developed a serum-free culture containing defined cytokines and immobilized anti-LILRB2 that supports a net expansion of repopulating human cord blood HSCs. Our elucidation of the mode of Angptl binding to LILRB2 enabled the development of a new approach for ex vivo expansion of human HSCs.


Subject(s)
Angiopoietins/chemistry , Angiopoietins/metabolism , Hematopoietic Stem Cells/metabolism , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Receptors, Immunologic/chemistry , Receptors, Immunologic/metabolism , Angiopoietin-Like Protein 2 , Angiopoietin-like Proteins , Angiopoietins/genetics , Animals , Fetal Blood/cytology , Fetal Blood/metabolism , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/cytology , Heterografts , Humans , Membrane Glycoproteins/genetics , Mice , Protein Binding , Protein Interaction Domains and Motifs , Receptors, Immunologic/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction
14.
Proteins ; 82(9): 1765-76, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24549784

ABSTRACT

Binding-site water molecules play a crucial role in protein-ligand recognition, either being displaced upon ligand binding or forming water bridges to stabilize the complex. However, rigorously treating explicit binding-site waters is challenging in molecular docking, which requires to fully sample ensembles of waters and to consider the free energy cost of replacing waters. Here, we describe a method to incorporate structural and energetic properties of binding-site waters into molecular docking. We first developed a solvent property analysis (SPA) program to compute the replacement free energies of binding-site water molecules by post-processing molecular dynamics trajectories obtained from ligand-free protein structure simulation in explicit water. Next, we implemented a distance-dependent scoring term into DOCK scoring function to take account of the water replacement free energy cost upon ligand binding. We assessed this approach in protein targets containing important binding-site waters, and we demonstrated that our approach is reliable in reproducing the crystal binding geometries of protein-ligand-water complexes, as well as moderately improving the ligand docking enrichment performance. In addition, SPA program (free available to academic users upon request) may be applied in identifying hot-spot binding-site residues and structure-based lead optimization.


Subject(s)
Proteins/chemistry , Thermodynamics , Water/chemistry , Algorithms , Binding Sites , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding
15.
Yao Xue Xue Bao ; 48(7): 1041-52, 2013 Jul.
Article in Chinese | MEDLINE | ID: mdl-24133970

ABSTRACT

Today, the understanding of the sequence and structure of biologically relevant targets is growing rapidly and researchers from many disciplines, physics and computational science in particular, are making significant contributions to modern biology and drug discovery. However, it remains challenging to rationally design small molecular ligands with desired biological characteristics based on the structural information of the drug targets, which demands more accurate calculation of ligand binding free-energy. With the rapid advances in computer power and extensive efforts in algorithm development, physics-based computational chemistry approaches have played more important roles in structure-based drug design. Here we reviewed the newly developed computational chemistry methods in structure-based drug design as well as the elegant applications, including binding-site druggability assessment, large scale virtual screening of chemical database, and lead compound optimization. Importantly, here we address the current bottlenecks and propose practical solutions.


Subject(s)
Computational Biology , Drug Design , Drug Discovery , Molecular Dynamics Simulation , High-Throughput Screening Assays , Molecular Docking Simulation , Quantitative Structure-Activity Relationship
16.
J Phys Chem B ; 115(33): 10041-8, 2011 Aug 25.
Article in English | MEDLINE | ID: mdl-21770426

ABSTRACT

The introduction of selenium into DNA in the place of oxygen provides a unique opportunity for studying the fidelity of DNA replication, as well as providing advantages in the growth of DNA crystals and the greater resolution of their structures. However, the atomic mechanisms of the relative stability and base pair recognition of the selenium-modified DNA are poorly understood. In the present study, quantum mechanics calculations were performed on base pairings, base stacking, and base-water interactions for both unmodified thymine and thymine with the 2-exo-oxygen replaced with selenium, and the results were used to develop and validate CHARMM force field parameters for the 2-Se-thymine. Subsequently, molecular dynamics simulations and free-energy perturbation calculations were performed on 11-base DNA sequences containing native thymine and the 2-Se-thymine. The calculated relative free-energy values are in good agreement with experimentally determined relative stability, where the 2-Se-thymine offers similar stability to T-A in cognate DNA, while it dramatically destabilizes the DNA containing the T-G mismatch base pair when 2-Se-thymine is incorporated. Thus, 2-Se-thymine largely increases the native T-A base pair fidelity by discouraging the T-G wobble pair. Insights into the high pairing specificity and the relative stability of selenium-modified DNA were obtained based on detailed structural and energetic analysis of molecular dynamics trajectories. Our studies move one step further toward an understanding of the high base pair fidelity and thermodynamic properties of Se-DNA in solution and in protein-DNA complexes.


Subject(s)
DNA/chemistry , Models, Theoretical , Selenium/chemistry , Base Pairing , Molecular Dynamics Simulation , Quantum Theory , Thermodynamics , Thymine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...