Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Microorganisms ; 11(5)2023 May 05.
Article in English | MEDLINE | ID: mdl-37317185

ABSTRACT

The Hexi Corridor is an arid region in northwestern China, where hypoliths are widely distributed, resulting from large amounts of translucent stone pavements. In this region, the water and heat distributions are uneven, with a descent gradient from east to west, which can affect the area's biological composition. The impact of environmental heterogeneity on the distribution of hypolithic microbial communities in this area is poorly understood, and this is an ideal location to investigate the factors that may influence the composition and structure of hypolithic microbial communities. An investigation of different sites with differences in precipitation between east and west revealed that the colonization rate decreased from 91.8% to 17.5% in the hypolithic community. Environmental heterogeneity influenced both the structure and function of the hypolithic community, especially total nitrogen (TN) and soil organic carbon (SOC). However, the effect on taxonomic composition was greater than that on ecological function. The dominant bacterial phyla in all sample sites were Cyanobacteria, Actinobacteria, Proteobacteria, and Deinococcus-Thermus, but the abundances varied significantly between the sampling sites. The eastern site had the highest relative abundance of Proteobacteria (18.43%) and Bacteroidetes (6.32%), while the western site had a higher relative abundance in the phyla Cyanobacteria (62%) and Firmicutes (1.45%); the middle site had a higher relative abundance of Chloroflexi (8.02%) and Gemmatimonadetes (1.87%). The dominant phylum in the fungal community is Ascomycota. Pearson correlation analysis showed that the soil's physicochemical properties were also associated with changes in community diversity at the sample sites. These results have important implications for better understanding the community assembly and ecological adaptations of hypolithic microorganisms.

2.
Sci Total Environ ; 871: 162137, 2023 May 01.
Article in English | MEDLINE | ID: mdl-36775167

ABSTRACT

The dispersion of microorganisms through the atmosphere is a continual and essential process that underpins biogeography and ecosystem development and function. Despite the ubiquity of atmospheric microorganisms globally, specific knowledge of the determinants of atmospheric microbial diversity at any given location remains unresolved. Here we describe bacterial diversity in the atmospheric boundary layer and underlying soil at twelve globally distributed locations encompassing all major biomes, and characterise the contribution of local and distant soils to the observed atmospheric community. Across biomes the diversity of bacteria in the atmosphere was negatively correlated with mean annual precipitation but positively correlated to mean annual temperature. We identified distinct non-randomly assembled atmosphere and soil communities from each location, and some broad trends persisted across biomes including the enrichment of desiccation and UV tolerant taxa in the atmospheric community. Source tracking revealed that local soils were more influential than distant soil sources in determining observed diversity in the atmosphere, with more emissive semi-arid and arid biomes contributing most to signatures from distant soil. Our findings highlight complexities in the atmospheric microbiota that are relevant to understanding regional and global ecosystem connectivity.


Subject(s)
Ecosystem , Microbiota , Soil , Bacteria , Atmosphere , Temperature , Soil Microbiology
3.
Astrobiology ; 23(3): 295-307, 2023 03.
Article in English | MEDLINE | ID: mdl-36625891

ABSTRACT

Motility is widely distributed across the tree of life and can be recognized by microscopy regardless of phylogenetic affiliation, biochemical composition, or mechanism. Microscopy has thus been proposed as a potential tool for detection of biosignatures for extraterrestrial life; however, traditional light microscopy is poorly suited for this purpose, as it requires sample preparation, involves fragile moving parts, and has a limited volume of view. In this study, we deployed a field-portable digital holographic microscope (DHM) to explore microbial motility in Badwater Spring, a saline spring in Death Valley National Park, and complemented DHM imaging with 16S rRNA gene amplicon sequencing and shotgun metagenomics. The DHM identified diverse morphologies and distinguished run-reverse-flick and run-reverse types of flagellar motility. PICRUSt2- and literature-based predictions based on 16S rRNA gene amplicons were used to predict motility genotypes/phenotypes for 36.0-60.1% of identified taxa, with the predicted motile taxa being dominated by members of Burkholderiaceae and Spirochaetota. A shotgun metagenome confirmed the abundance of genes encoding flagellar motility, and a Ralstonia metagenome-assembled genome encoded a full flagellar gene cluster. This study demonstrates the potential of DHM for planetary life detection, presents the first microbial census of Badwater Spring and brine pool, and confirms the abundance of mobile microbial taxa in an extreme environment.


Subject(s)
Microscopy , Parks, Recreational , Phylogeny , RNA, Ribosomal, 16S/genetics , Metagenome , Metagenomics/methods , North America
4.
Astrobiology ; 21(5): 505-510, 2021 05.
Article in English | MEDLINE | ID: mdl-33885325

ABSTRACT

Preferential uptake of either levorotatory (L) or dextrorotatory (D) enantiomer of a chiral molecule is a potential planetary life-detection method. On Earth, bacteria, as a rule, metabolize D-sugars and L-amino acids. Here, we use growth experiments to identify exceptions to the rule and their potential impact on the method's reliability. Our experiments involve six strains of Bacillus and collective uptake of the sugars glucose and arabinose, and the amino acids alanine, glutamic acid, leucine, cysteine, and serine-all of which are highly soluble. We find that selective uptake is not evident unless (1) each sugar is tested individually and (2) multiple amino acids are tested together in a mixture. Combining sugars should be avoided because, as we show in Bacillus bacteria, the same organisms may catabolize one sugar, glucose, in D-form and another sugar, arabinose, in L-form. Single amino acids should be avoided because bacteria can access certain proteinogenically incompatible enantiomers using specific racemases. Specifically, bacteria contain an alanine acid racemase and can catabolize D-alanine if no other D-amino acids are present. The proposed improvements would reliably separate nonselective chemical reactions from biological reactions and, if life is indicated, inform whether the selective patterns for amino acids and sugars are the same as on Earth.


Subject(s)
Alanine , Amino Acids , Carbohydrates , Reproducibility of Results , Stereoisomerism
5.
Front Microbiol ; 12: 633141, 2021.
Article in English | MEDLINE | ID: mdl-33664721

ABSTRACT

Bacteria in root nodules of legumes play important roles in promoting plant growth. In this study, we investigated root nodule-associated bacteria isolated from leguminous plants along an elevation gradient on the northern slope of the Kunlun Mountains, China, using a cultivation approach. In total, 300 isolates were obtained from seven legume species within six ecological zones. Isolates were identified based on 16S rRNA gene phylogenetic analysis and potential rhizobia were further identified using a recA gene phylogeny. Among the isolates, Bacillales (particularly Bacillus) were the dominant isolates from all host legumes and all elevations (63.5%), followed by Rhizobiales (13%) and Pseudomonadales (11.7%). Less than 3% of the isolates belonged to Burkholderiales, Paenibacillales, Enterobacteriales, Actinomycetales, Sphingomonadales, Xanthomonadales, Chitinophagales, Brevibacillales, Staphylococcales, or Mycobacteriales. A few elevation-specific patterns emerged within the Bacillales and Pseudomonadales. For example, isolates related to the psychrotroph Bacillus psychrosaccharolyticus were only isolated from the highest elevation sites (>3,500 m) whereas those related to the mesophile Bacillus endophyticus were only isolated from lowest elevation sites (1,350 m), suggestive of a role of soil temperature in their distribution. Similarly, isolates related to Pseudomonas brassicacearum were the dominant Pseudomonadales isolates, but they were only isolated from middle and low elevations (<3,200 m). A total of 39 isolates belonged to the Rhizobiales, 36 of which were confirmed to the genus level using the recA gene. In all, Rhizobiales isolates were obtained from five different host legumes spanning the entire elevation gradient. Those from the low-elevation Qira Desert-Oasis Transition Zone (1,350-1,960 m) suggested some patterns of host preference. For example, most isolates from Albizia julibrissin formed a monophyletic group related to Rhizobium lemnae and most from Alhagi sparsifolia were closely related to Ensifer kummerowiae. In general, this study shows that most bacteria associated with root nodules of legumes are widely distributed in distinct ecological zones within a single geographic region but suggests that both climate and host interactions may influence their distributions.

6.
Astrobiology ; 16(2): 126-42, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26881470

ABSTRACT

This study presents an assay for the detection and quantification of soil metal superoxides and peroxides in regolith and soil. The O2 release (OR) assay is based on the enzymatic conversion of the hydrolysis products of metal oxides to O2 and their quantification by an O2 electrode based on the stoichiometry of the involved reactions. The intermediate product O2˙⁻ from the hydrolysis of metal superoxides is converted by cytochrome c to O2 and by superoxide dismutase (SOD) to ½ mol O2 and ½ mol H2O2, which is then converted by catalase (CAT) to ½ mol O2. The product H2O2 from the hydrolysis of metal peroxides and hydroperoxides is converted to ½ mol O2 by CAT. The assay method was validated in a sealed sample chamber by using a liquid-phase Clark-type O2 electrode with known concentrations of O2˙⁻ and H2O2, and commercial metal superoxide and peroxide mixed with Mars analog Mojave and Atacama Desert soils. Carbonates and perchlorates, both present on Mars, do not interfere with the assay. The assay lower limit of detection, when using luminescence quenching/optical sensing O2-electrodes, is 1 nmol O2 cm(-3) or better. The activity of the assay enzymes SOD and cytochrome c was unaffected up to 6 Gy exposure by γ radiation, while CAT retained 100% and 40% of its activity at 3 and 6 Gy, respectively, which demonstrates the suitability of these enzymes for planetary missions, for example, on Mars or Europa.


Subject(s)
Enzyme Assays/methods , Mars , Oxygen/analysis , Peroxides/analysis , Superoxides/analysis , Catalase/metabolism , Computer Simulation , Electron Transport Complex IV/metabolism , Gamma Rays , Hydrogen-Ion Concentration , Hydrolysis , Soil , Superoxide Dismutase/metabolism
7.
Nat Commun ; 6: 7100, 2015 May 11.
Article in English | MEDLINE | ID: mdl-25960012

ABSTRACT

The combination of intense solar radiation and soil desiccation creates a short circuit in the biogeochemical carbon cycle, where soils release significant amounts of CO2 and reactive nitrogen oxides by abiotic oxidation. Here we show that desert soils accumulate metal superoxides and peroxides at higher levels than non-desert soils. We also show the photogeneration of equimolar superoxide and hydroxyl radical in desiccated and aqueous soils, respectively, by a photo-induced electron transfer mechanism supported by their mineralogical composition. Reactivity of desert soils is further supported by the generation of hydroxyl radical via aqueous extracts in the dark. Our findings extend to desert soils the photogeneration of reactive oxygen species by certain mineral oxides and also explain previous studies on desert soil organic oxidant chemistry and microbiology. Similar processes driven by ultraviolet radiation may be operating in the surface soils on Mars.


Subject(s)
Photochemical Processes , Reactive Oxygen Species/chemistry , Soil/chemistry , Desert Climate , Metals/chemistry , Oxidation-Reduction , Peroxides
8.
PLoS One ; 9(3): e92101, 2014.
Article in English | MEDLINE | ID: mdl-24647559

ABSTRACT

D-amino acids are toxic for life on Earth. Yet, they form constantly due to geochemical racemization and bacterial growth (the cell walls of which contain D-amino acids), raising the fundamental question of how they ultimately are recycled. This study provides evidence that bacteria use D-amino acids as a source of nitrogen by running enzymatic racemization in reverse. Consequently, when soils are inundated with racemic amino acids, resident bacteria consume D- as well as L-enantiomers, either simultaneously or sequentially depending on the level of their racemase activity. Bacteria thus protect life on Earth by keeping environments D-amino acid free.


Subject(s)
Amino Acids/toxicity , Arthrobacter/drug effects , Earth, Planet , Racemases and Epimerases/metabolism , Arthrobacter/metabolism , Desert Climate , Models, Biological , Stereoisomerism
9.
Astrobiology ; 13(11): 1005-10, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24228931

ABSTRACT

Contextual, multiscale astrobiological imaging is necessary to discover, map, and image patchy microbial colonization in extreme environments on planetary surfaces. The large difference in scale--several orders of magnitude--between search environment and microorganisms or microbial communities represents a challenge, which to date no single imaging instrument is able to overcome. In support of future planetary reconnaissance missions, we introduce an adapter-based imager, built from an off-the-shelf consumer digital camera, that offers scalable imaging ranging from macroscopic (meters per pixel) to microscopic (micrometers per pixel) imaging, that is, spanning at least 6 orders of magnitude. Magnification in digital cameras is governed by (1) the native resolution of the CCD/CMOS chip of the camera, (2) the distance between camera and object to be imaged (focal length), and (3) the built-in optical and digital zoom. Both telezoom and macro mode alone are usually insufficient for microscopic imaging. Therefore, the focal distance has to be shortened, and the native CCD resolution of the camera has to be increased to attain a microscopic imaging capability. Our adapter-based imager bridges the gap between macroscopic and microscopic imaging, thereby enabling for the first time contextual astrobiological imaging with the same instrument. Real-world applications for astrobiology and planetary geology are discussed, and proof-of-concept imagery taken with our prototype is presented.


Subject(s)
Exobiology/instrumentation , Optical Imaging/instrumentation , Photography/instrumentation , Planets , Colony Count, Microbial/instrumentation , Colony Count, Microbial/methods , Equipment Design/instrumentation , Equipment Design/methods , Exobiology/methods , Optical Imaging/methods , Optical Imaging/standards , Photography/methods
10.
Biology (Basel) ; 2(2): 693-701, 2013 Apr 03.
Article in English | MEDLINE | ID: mdl-24832803

ABSTRACT

Cyanobacteria and lichens living under sandstone surfaces in the McMurdo Dry Valleys require snow for moisture. Snow accumulated beyond a thin layer, however, is counterproductive, interfering with rock insolation, snow melting, and photosynthetic access to light. With this in mind, the facts that rock slope and direction control colonization, and that climate change results in regional extinctions, can be explained. Vertical cliffs, which lack snow cover and are perpetually dry, are devoid of organisms. Boulder tops and edges can trap snow, but gravity and wind prevent excessive buildup. There, the organisms flourish. In places where snow-thinning cannot occur and snow drifts collect, rocks may contain living or dead communities. In light of these observations, the possibility of finding extraterrestrial endolithic communities on Mars cannot be eliminated.

11.
Astrobiology ; 10(4): 397-402, 2010 May.
Article in English | MEDLINE | ID: mdl-20528194

ABSTRACT

Asymmetrical utilization of chiral compounds has been sought on Mars as evidence for biological activity. This method was recently validated in glucose. Earth organisms utilize D-glucose, not L-glucose, a perfect asymmetry. In this study, we tested the method in lactate and found utilization of both enantiomers. Soil-, sediment-, and lake-borne microbial communities prefer D-lactate but can consume L-lactate if given extra time to acclimate. This situation is termed imperfect asymmetry. Future life-detection mission investigators need to be aware of imperfect asymmetry so as not to miss relatively subtle signs of life.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Lactic Acid/chemistry , Lactic Acid/metabolism , Earth, Planet , Fresh Water/microbiology , Geologic Sediments/microbiology , Isomerism , Soil Microbiology
12.
Astrobiology ; 9(5): 443-6, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19566424

ABSTRACT

Two alternative hypotheses explain the degradation of organics in the Viking Labeled Release experiment on Mars. Either martian soil contains live indigenous microorganisms or it is sterile but chemically reactive. These two possibilities could be distinguished by the use of pure preparations of glucose isomers. In the laboratory, selected eukaryotes, bacteria, and archaea consumed only D-glucose, not L-glucose, while permanganate oxidized both isomers. On Mars, selective consumption of either D- or L-glucose would constitute evidence for biological activity.


Subject(s)
Earth, Planet , Extraterrestrial Environment , Glucose/chemistry , Glucose/metabolism , Mars , Bacteria/metabolism , Fungi/metabolism , Oxidation-Reduction , Stereoisomerism
13.
Microb Ecol ; 49(4): 523-7, 2005 May.
Article in English | MEDLINE | ID: mdl-15891938

ABSTRACT

An apparent paradox exists in the ecology of Antarctic lichens: their net photosynthetic temperature optimum (around 0 degrees C) lies far below the temperature optima of their constituent algae and fungi (around 20 degrees C). To address this paradox, we consider lichens as microbial communities and propose the "community adaptation" hypothesis, which posits that in each thermal regime there is an equilibrium between photosynthetic primary producers (photobionts), and heterotrophic consumers (mycobiont and parasymbiont fungi). This equilibrium, expressed as the producer/consumer ratio (R(p/c)), maximizes the fitness of the community. As respiration increases with temperature, more rapidly than does photosynthesis, R(p/c )will shift accordingly in warm habitats, resulting in a high-growth temperature optimum for the community (the lichen). This lends lichens an adaptive flexibility that enables them to function optimally at any thermal regime within the tolerance limits of the constituent organisms. The variable equilibrium of producers and consumers may have a similar role in thermal adaptation of more complex communities and ecosystems.


Subject(s)
Adaptation, Physiological/physiology , Lichens/physiology , Photosynthesis/physiology , Symbiosis , Temperature , Antarctic Regions , Oxygen Consumption/physiology
14.
Microb Ecol ; 49(4): 528-35, 2005 May.
Article in English | MEDLINE | ID: mdl-15900395

ABSTRACT

The community adaptation hypothesis [7] predicts that lichens, simple communities of microorganisms, can adapt to a wide range of thermal regimes by regulating the ratio of primary producers (algae) and consumers (fungi): R(p/c). To test this hypothesis, we determined R(p/c) values by image analysis of cross sections of herbarium specimens of the lichen Cladina rangiferina, which is widely distributed between the Arctic and the tropics. We found that R(p/c) for C. rangiferina increases with summer temperature by more than one order of magnitude, consistent with the hypothesis. To assess the ecological significance of community adaptation (R(p/c) regulation), other adaptive mechanisms (e.g., photobiont substitution, genetic adaptation, and photosynthetic acclimation in North American Cladina spp.) were studied. Laboratory investigations with algae and fungi isolated in culture from live specimens suggested that the role of these mechanisms is relatively minor and cannot account for the high degree of lichen adaptability.


Subject(s)
Adaptation, Physiological/physiology , Ascomycota/growth & development , Chlorophyta/growth & development , Lichens/physiology , Photosynthesis/physiology , Symbiosis , Temperature , Antarctic Regions , Ascomycota/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...