Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
World J Psychiatry ; 14(2): 276-286, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38464765

ABSTRACT

BACKGROUND: Major depression disorder (MDD) constitutes a significant mental health concern. Epidemiological surveys indicate that the lifetime prevalence of depression in adolescents is much higher than that in adults, with a corresponding increased risk of suicide. In studying brain dysfunction associated with MDD in adole-scents, research on brain white matter (WM) is sparse. Some researchers even mistakenly regard the signals generated by the WM as noise points. In fact, studies have shown that WM exhibits similar blood oxygen level-dependent signal fluctuations. The alterations in WM signals and their relationship with disease severity in adolescents with MDD remain unclear. AIM: To explore potential abnormalities in WM functional signals in adolescents with MDD. METHODS: This study involved 48 adolescent patients with MDD and 31 healthy controls (HC). All participants were assessed using the Patient Health Questionnaire-9 Scale and the mini international neuropsychiatric interview (MINI) suicide inventory. In addition, a Siemens Skyra 3.0T magnetic resonance scanner was used to obtain the subjects' image data. The DPABI software was utilized to calculate the WM signal of the fractional amplitude of low frequency fluctuations (fALFF) and regional homogeneity, followed by a two-sample t-test between the MDD and HC groups. Independent component analysis (ICA) was also used to evaluate the WM functional signal. Pearson's correlation was performed to assess the relationship between statistical test results and clinical scales. RESULTS: Compared to HC, individuals with MDD demonstrated a decrease in the fALFF of WM in the corpus callosum body, left posterior limb of the internal capsule, right superior corona radiata, and bilateral posterior corona radiata [P < 0.001, family-wise error (FWE) voxel correction]. The regional homogeneity of WM increased in the right posterior limb of internal capsule and left superior corona radiata, and decreased in the left superior longitudinal fasciculus (P < 0.001, FWE voxel correction). The ICA results of WM overlapped with those of regional homo-geneity. The fALFF of WM signal in the left posterior limb of the internal capsule was negatively correlated with the MINI suicide scale (P = 0.026, r = -0.32), and the right posterior corona radiata was also negatively correlated with the MINI suicide scale (P = 0.047, r = -0.288). CONCLUSION: Adolescents with MDD involves changes in WM functional signals, and these differences in brain regions may increase the risk of suicide.

2.
Fish Shellfish Immunol ; 145: 109313, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38128678

ABSTRACT

The dual-specificity phosphatase (DUSP) family plays key roles in the maintenance of cellular homeostasis and apoptosis etc. In this study, the DUSP member DUSP1 of Epinephelus coioides was characterized: the length was 2371 bp including 281 bp 5' UTR, 911 bp 3' UTR, and a 1125 bp open reading frame encoding 374 amino acids. E. coioides DUSP1 has two conserved domains, a ROHD and DSPc along with a p38 MAPK phosphorylation site, localized at Ser308. E. coioides DUSP1 mRNA can be detected in all of the tissues examined, and the subcellular localization showed that DUSP1 was mainly distributed in the nucleus. Singapore grouper iridovirus (SGIV) infection could induce the differential expression of E. coioides DUSP1. Overexpression of DUSP1 could inhibit SGIV-induced cytopathic effect (CPE), the expressions of SGIV key genes, and the viral titers. Overexpression of DUSP1 could also regulate SGIV-induced apoptosis, and the expression of apoptosis-related factor caspase 3. The results would be helpful to further study the role of DUSP1 in viral infection.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Iridovirus , Ranavirus , Animals , Bass/genetics , Iridovirus/physiology , Singapore , Cloning, Molecular , Apoptosis , Dual-Specificity Phosphatases/genetics , Fish Proteins/genetics , Phylogeny
3.
Fish Shellfish Immunol ; 142: 109113, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37788751

ABSTRACT

Circular RNA (circRNA), one of the important non-coding RNA molecules with a closed-loop structure, plays a key regulatory role in cell processing. In this study, circRNAs of Epinephelus coioides, an important marine cultured fish in China, were isolated and characterized, and the network of circRNAs and mRNA was explored during Singapore grouper iridovirus (SGIV) infection, one of the most important double stranded DNA virus pathogens of marine fish. 10 g of raw data was obtained by high-throughput sequencing, and 2599 circRNAs were classified. During SGIV infection, 123 and 37 circRNAs occurred differential expression in spleen and spleen cells, indicating that circRNAs would be involved in the viral infection. GO annotation and KEGG demonstrated that circRNAs could target E. coioides genes to regulate cell activity and the activation of immune factors. The results provide some insights into the circRNAs mediated immune regulatory network during bony fish virus infection.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Iridovirus , Perciformes , Ranavirus , Animals , Bass/genetics , Bass/metabolism , RNA, Circular/genetics , RNA, Messenger/genetics , Singapore , Fish Proteins/genetics , Fish Proteins/metabolism
4.
Hum Brain Mapp ; 44(17): 6245-6257, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37837649

ABSTRACT

Rumination is closely linked to the onset and maintenance of major depressive disorder (MDD). Prior neuroimaging studies have identified the association between self-reported rumination trait and the functional coupling among a network of brain regions using resting-state functional magnetic resonance imaging (MRI). However, little is known about the underlying neural circuitry mechanism during active rumination in MDD. Degree centrality (DC) is a simple metric to denote network integration, which is critical for higher-order psychological processes such as rumination. During an MRI scan, individuals with MDD (N = 45) and healthy controls (HC, N = 46) completed a rumination state task. We examined the interaction effect between the group (MDD vs. HC) and condition (rumination vs. distraction) on vertex-wise DC. We further characterized the identified brain region's functional involvement with Neurosynth and BrainMap. Network-wise seed-based functional connectivity (FC) analysis was also conducted for the identified region of interest. Finally, exploratory correlation analysis was conducted between the identified region of interest's network FCs and self-reported in-scanner affect levels. We found that a left superior frontal gyrus (SFG) region, generally overlapped with the frontal eye field, showed a significant interaction effect. Further analysis revealed its involvement with executive functions. FCs between this region, the frontoparietal, and the dorsal attention network (DAN) also showed significant interaction effects. Furthermore, its FC to DAN during distraction showed a marginally significant negative association with in-scanner affect level at the baseline. Our results implicated an essential role of the left SFG in the rumination's underlying neural circuitry mechanism in MDD and provided novel evidence for the conceptualization of rumination in terms of impaired executive control.


Subject(s)
Depressive Disorder, Major , Humans , Brain/diagnostic imaging , Prefrontal Cortex , Executive Function , Frontal Lobe , Magnetic Resonance Imaging , Brain Mapping
5.
Front Microbiol ; 14: 1086471, 2023.
Article in English | MEDLINE | ID: mdl-37065157

ABSTRACT

The effect of structure of gut microbes on the health of host has attracted increasing attention. Sea bass Lateolabrax japonicus is an important farmed fish in China. The relationship of the dynamic changes of intestinal bacterial communities in L. japonicus and the cultural water environment is very important for healthy culture. Here, the diversity and abundance of the gut microbial communities of L. japonicus were evaluated during the culture using 16S rRNA Illumina sequencing. Both the opportunistic pathogens Aeromonas (1.68%), Vibrio (1.59%), and Acinetobacter (1.22%); and the potential probiotics Lactobacillus (2.27%), Bacillus (1.16%), and Lactococcus (0.37%) were distributed in the gut of L. japonicus. The increasing concentration of nitrogen of water environments with the increase of culture time significantly correlated with shifts in the microbial community structure: 40.04% of gut microbial changes due to nitrogen concentration. Higher concentrations of nitrogen showed a significantly negative correlation with intestinal probiotics in L. japonicus. The results indicate that the abundance of intestinal bacteria of L. japonicus is mainly driven by the changes of environmental factors (e.g., nitrogen), and it's very important that the linking environmental parameters with bacterial data of guts could be used as an early warning indicator in L. japonicus heath culture.

6.
Dev Comp Immunol ; 142: 104646, 2023 05.
Article in English | MEDLINE | ID: mdl-36702214

ABSTRACT

Protein kinase C (PKC) constitutes the main signal transduction pathway, and participates in the signal pathway of cell proliferation and movement in mammals. In this study, PKC-ɑ was obtained from Epinephelus coioides, an important marine fish cultivated in the coastal areas of southern China and Southeast Asia. The full length cDNA of PKC-ɑ was 3362 bp in length containing a 23 bp 5'UTR, a 1719 bp 3'UTR, and a 1620 bp open reading frame encoding 539 amino acids. It contains three conservative domains including protein kinase C conserved region 2 (C2), Serine/Threonine protein kinases, catalytic domain (S_TKc) and ser/thr-type protein kinases (S_TK_X). Its mRNA can be detected in all 11 tissues examined of E. coioides, and the expression was significantly upregulated response to Singapore grouper iridovirus (SGIV) infection, one of the important pathogens of marine fish. Upregulated E. coioides PKC-ɑ significantly inhibited the activation of nuclear factor kappa-B (NF-κB) and activator protein-1 (AP-1), and SGIV-induced cell apoptosis. The results indicated that the PKC-ɑ may play an important role in pathogenic stimulation.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Iridovirus , Ranavirus , Animals , Bass/genetics , Bass/metabolism , Iridovirus/physiology , Singapore , DNA Virus Infections/genetics , Fish Proteins/metabolism , Ranavirus/physiology , Protein Kinase C/genetics , Cloning, Molecular , Phylogeny , Mammals/genetics
7.
World J Diabetes ; 14(12): 1721-1737, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38222785

ABSTRACT

Diabetes mellitus (DM) is a chronic metabolic condition characterized predominantly by hyperglycemia. The most common causes contributing to the pathophysiology of diabetes are insufficient insulin secretion, resistance to insulin's tissue-acting effects, or a combination of both. Over the last 30 years, the global prevalence of diabetes increased from 4% to 6.4%. If no better treatment or cure is found, this amount might climb to 430 million in the coming years. The major factors of the disease's deterioration include age, obesity, and a sedentary lifestyle. Finding new therapies to manage diabetes safely and effectively without jeopardizing patient compliance has always been essential. Among the medications available to manage DM on this journey are glucagon-like peptide-1 agonists, thiazolidinediones, sulphonyl urease, glinides, biguanides, and insulin-targeting receptors discovered more than 10 years ago. Despite the extensive preliminary studies, a few clinical observations suggest this process is still in its early stages. The present review focuses on targets that contribute to insulin regulation and may be employed as targets in treating diabetes since they may be more efficient and secure than current and traditional treatments.

8.
World J Diabetes ; 14(12): 1738-1753, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38222792

ABSTRACT

Monogenic diabetes is caused by one or even more genetic variations, which may be uncommon yet have a significant influence and cause diabetes at an early age. Monogenic diabetes affects 1 to 5% of children, and early detection and gene-tically focused treatment of neonatal diabetes and maturity-onset diabetes of the young can significantly improve long-term health and well-being. The etiology of monogenic diabetes in childhood is primarily attributed to genetic variations affecting the regulatory genes responsible for beta-cell activity. In rare instances, mutations leading to severe insulin resistance can also result in the development of diabetes. Individuals diagnosed with specific types of monogenic diabetes, which are commonly found, can transition from insulin therapy to sulfonylureas, provided they maintain consistent regulation of their blood glucose levels. Scientists have successfully devised materials and methodologies to distinguish individuals with type 1 or 2 diabetes from those more prone to monogenic diabetes. Genetic screening with appropriate findings and interpretations is essential to establish a prognosis and to guide the choice of therapies and management of these interrelated ailments. This review aims to design a comprehensive literature summarizing genetic insights into monogenetic diabetes in children and adolescents as well as summarizing their diagnosis and mana-gement.

9.
Fish Shellfish Immunol ; 131: 441-453, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36202205

ABSTRACT

Singapore grouper iridovirus (SGIV) is a highly pathogenic double-stranded DNA virus, and the fatality rate of SGIV-infected grouper is more than 90%. Up to now, there is no effective methods to control the disease. Long non-coding RNAs (lncRNAs) might play an important role in individual growth and development, immune regulation and other life processes. In this study, lncRNAs were identified in Epinephelus coioides, an important economic aquaculture marine fish in China and Southeast Asia, and the regulatory relationships of lncRNAs and mRNA response to SGIV infection were analyzed. A total of 11,678 lncRNAs were identified and classified from the spleen and GS (grouper spleen) cells. 105 differentially expressed lncRNAs (DElncRNAs) were detected during SGIV infection. The lncRNAs and the regulated mRNAs were analyzed using co-expression network, lncRNA target gene annotation and GO enrichment. At 24 and 48 h after SGIV infection, 118 and 339 lncRNA-mRNA pairs in GS cells were detected, and 728 and 688 differentially expressed lncRNA-mRNA pairs in spleen were obtained, respectively. GO and KEGG were used to predict the DE lncRNAs' target genes, and deduce the DE lncRNAs-affected signaling pathways. In GS cells, lncRNAs might participate in cell part, binding and catalytic activity; and lncRNAs might be involved in immune system process and transcription factor activity in spleen. These data demonstrated that lncRNAs could regulate the expression of immune-related genes response to viral infection, and providing a new insight into understanding the complexity of immune regulatory networks mediated by lncRNAs during viral infection in teleost fish.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Iridovirus , RNA, Long Noncoding , Ranavirus , Animals , Bass/genetics , Bass/metabolism , Iridovirus/physiology , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Singapore , Fish Proteins/genetics , Fish Proteins/metabolism
10.
Int J Ophthalmol ; 15(6): 1015-1019, 2022.
Article in English | MEDLINE | ID: mdl-35814882

ABSTRACT

AIM: To identify the disease-causing mutation in a four-generation Chinese family diagnosed with Nance-Horan syndrome (NHS). METHODS: A Chinese family, including four affected patients and four healthy siblings, was recruited. All family members received ophthalmic examinations with medical histories provided. Targeted next-generation sequencing approach was conducted on the two affected males to screen for their disease-causing mutations. RESULTS: Two male family members diagnosed with NHS manifested bilateral congenital cataracts microcornea, strabismus and subtle facial and dental abnormalities, while female carriers presented posterior Y-sutural cataracts. A novel frameshift mutation (c.3916_3919del) in the NHS gene was identified. This deletion was predicted to alter the reading frame and generate a premature termination codon after a new reading frame. CONCLUSION: The study discovers a new frameshift mutation in a Chinese family with NHS. The findings broaden the spectrum of NHS mutations that can cause NHS in Chinese patients.

11.
Fish Shellfish Immunol ; 126: 113-121, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35609761

ABSTRACT

Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) in mammals is a multifunctional protein. In this study, PCSK9 of marine fish Epinephelus coioides was characterized. The full-length cDNA of E. coioides PCSK9 was 2458 bp in length containing 185 bp 5' UTR, 263 bp 3' UTR and 2010 bp open reading frame (ORF) encoding 669 amino acids with the predicted molecular weight of 71 kDa and the theoretical PI of 6.6. Similar to other members of PCSK9 family, E. coioides PCSK9 has three conserved domains: Inhibitor_ I9 super family, Peptidases_ S8_ PCSK9_ Proteinase K_ like, and PCSK9_ C-CRD super family. E. coioides PCSK9 mRNA could be detected in all the tissues examined by real-time quantitative PCR, with the highest expression in the brain, followed by skin, trunk kidney, head kidney, intestine, blood, liver, spleen, gill, muscle and heart. E. coioides PCSK9 was distributed in both the cytoplasm and nucleus. The expression of E. coioides PCSK9 was significantly upregulated during Singapore grouper iridovirus (SGIV) infection. Upregulated PCSK9 could significantly affect the activities of nuclear factor kappaB (NF-κB) promoter, SGIV-induced apoptosis, and the expressions of the key SGIV genes (ICP18, LITAT, MCP, and VP19) and the E. coioides proinflammatory factors (IL-6, IL-1ß, IL-8, and TNF-α). The results illustrated that E. coioides PCSK9 might be involved in the pathogen infection by regulating the innate immune response.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Iridovirus , Ranavirus , Animals , Cloning, Molecular , Fish Proteins/chemistry , Immunity, Innate/genetics , Iridovirus/physiology , Mammals/genetics , Mammals/metabolism , Proprotein Convertase 9/genetics , Ranavirus/physiology
12.
Fish Shellfish Immunol ; 124: 462-471, 2022 May.
Article in English | MEDLINE | ID: mdl-35483595

ABSTRACT

Exocyst complex component 3 Sec6 of mammals, one of the components of the exocyst complex, participates in numerous cellular functions, such as promoting cell migration and inhibiting apoptosis. In this study, the Sec6 was obtained from Epinephelus coioides, an economically important cultured fish. The full length of E. coioides Sec6 was 2655 bp including a 245 bp 5' UTR, a 154 bp 3' UTR, and a 2256 bp open reading frame (ORF) encoding 751 amino acids, with a molecular mass of 86.76 kDa and a theoretical pI of 5.57. Sec6 mRNA was detected in all the tissues examined, but the expression level is different in these tissues. Using fluorescence microscopy, Sec6 were distributed in both the nucleus and the cytoplasm. After SGIV infection, the expression of E. coioides Sec6 was significantly up-regulated in both trunk kidney and spleen response to Singapore grouper iridovirus (SGIV), an important pathogens of E. coioides. Sec6 could increase the SGIV-induced cytopathic effects (CPE), the expression of the SGIV genes VP19, LITAF, MCP, ICP18 and MCP, and the viral titers. Besides, E. coioides Sec6 significantly downregulated the promoter of NF-κB and AP-1, and inhibited the SGIV-induced apoptosis. The results demonstrated that E. coioides Sec6 might play important roles in SGIV infection.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Iridovirus , Ranavirus , Animals , Bass/genetics , Bass/metabolism , Cloning, Molecular , DNA Virus Infections/veterinary , Fish Proteins/genetics , Fish Proteins/metabolism , Mammals/genetics , Mammals/metabolism , Phylogeny
13.
Fish Shellfish Immunol ; 120: 470-480, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34933091

ABSTRACT

Heat shock proteins (Hsps) are important for maintaining protein homeostasis and cell survival. In this study, Hsp27 of Epinephelus coioides, an economically important marine fish in China and Southeast Asian countries, was characterized. E. coioides Hsp27 contains the consered ACD_HspB1_like domain and three p38 MAPK phosphorylation sites, located at Thr-13, Thr-60 and Ser-167. E. coioides Hsp27 was distributed in both the cytoplasm and nucleus, its mRNA was detected in all 14 tissues examined, and its expression was up-regulated after challenge with Singapore grouper iridovirus (SGIV), an important E. coioides pathogen. Over-expression of E. coioides Hsp27 significantly upregulated the expressions of the key SGIV genes (VP19, LITAF, MCP, and ICP18), downgraded the expressions of the E. coioides immune factors (IRF3, IRF7, ISG15, and TRAF6) and proinflammatory factors (TNF-α, IL-8), downgraded the activation of nuclear factor kappa-B (NF-κB) and activator protein-1 (AP-1), and substantially inhibited the cell apoptosis induced by SGIV infection. These data illustrated that E. coioides Hsp27 might be involved in SGIV infection by negatively regulating the innate immune response.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Fish Proteins/immunology , Heat-Shock Proteins/immunology , Immunity, Innate , Animals , Apoptosis , Bass/immunology , DNA Virus Infections/veterinary , Fish Diseases/immunology , Fish Diseases/virology , Fish Proteins/genetics , Heat-Shock Proteins/genetics , Iridovirus
14.
Front Immunol ; 12: 767813, 2021.
Article in English | MEDLINE | ID: mdl-34858424

ABSTRACT

Viral infections seriously affect the health of organisms including humans. Now, more and more researchers believe that microRNAs (miRNAs), one of the members of the non-coding RNA family, play significant roles in cell biological function, disease occurrence, and immunotherapy. However, the roles of miRNAs in virus infection (entry and replication) and cellular immune response remain poorly understood, especially in low vertebrate fish. In this study, based on the established virus-cell infection model, Singapore grouper iridovirus (SGIV)-infected cells were used to explore the roles of miR-124 of Epinephelus coioides, an economically mariculture fish in southern China and Southeast Asia, in viral infection and host immune responses. The expression level of E. coioides miR-124 was significantly upregulated after SGIV infection; miR-124 cannot significantly affect the entry of SGIV, but the upregulated miR-124 could significantly promote the SGIV-induced cytopathic effects (CPEs), the viral titer, and the expressions of viral genes. The target genes of miR-124 were JNK3/p38α mitogen-activated protein kinase (MAPK). Overexpression of miR-124 could dramatically inhibit the activation of NF-κB/activating protein-1 (AP-1), the transcription of proinflammatory factors, caspase-9/3, and the cell apoptosis. And opposite results happen when the expression of miR-124 was inhibited. The results suggest that E. coioides miR-124 could promote viral replication and negatively regulate host immune response by targeting JNK3/p38α MAPK, which furthers our understanding of virus and host immune interactions.


Subject(s)
Bass/virology , DNA Virus Infections/veterinary , Fish Diseases/immunology , Iridovirus/physiology , MicroRNAs/physiology , Virus Replication , Animals , Apoptosis , DNA Virus Infections/immunology , Immunity, Innate , Mitogen-Activated Protein Kinase 10/physiology , p38 Mitogen-Activated Protein Kinases/physiology
15.
Fish Shellfish Immunol ; 118: 396-404, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34571156

ABSTRACT

Heat shock protein 40 (Hsp40), a member of Heat shock proteins (Hsps) family, plays a crucial role in regulation of cell proliferation, survival and apoptosis in mammals. In this study, Hsp40, EcHsp40, was identified from Epinephelus coioides, an economically important marine-cultured fish in China and Southeast Asian counties. The full length of EcHsp40 was 2236 bp in length containing a 1026 bp open reading frame (ORF) encoding 341 amino acids, with a molecular mass of 37.88 kDa and a theoretical pI of 9.09. EcHsp40 has two conserved domains DnaJ and DnaJ_C. EcHsp40 mRNA was detected in all tissues examined, and the expression was significantly up-regulated response to challenged with Vibrio alginolyticus or Singapore grouper iridovirus (SGIV), one of the important pathogens of marine fish. EcHsp40 was distributed in both the cytoplasm and nucleus, over-expression of EcHsp40 can inhibit the activity of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), significantly promote SGIV-induced apoptosis, intracellular caspase-3 activity and viral replication, suggesting that the EcHsp40 may play an important role in pathogenic stimulation.


Subject(s)
Bass , DNA Virus Infections , Fish Diseases , Iridovirus , Ranavirus , Animals , Bass/genetics , Fish Diseases/virology , Fish Proteins/genetics , HSP40 Heat-Shock Proteins , Phylogeny , Vibrio alginolyticus
16.
Hum Exp Toxicol ; 40(12_suppl): S137-S149, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34289745

ABSTRACT

OBJECTIVE: To discuss the possible effects of microRNA-141 (miR-141) in sepsis-induced cardiomyopathy (SIC) via targeting death-associated protein kinase 1 (DAPK1). METHODS: An SIC mouse model was constructed by abdominal injection of lipopolysaccharide (LPS) and divided into control, LPS, LPS + pre-miR-141, and LPS + anti-miR-141 groups. Hemodynamic indicators and heart function indexes of mice were detected. ELISA was used to determine the serum levels of inflammatory cytokines, while TUNEL staining to observe the apoptosis of myocardial cells of mice, as well as qRT-PCR and Western blotting to clarify the expression of miR-141 and DAPK1. Lastly, in vitro experiment was also conducted on the primary neonatal rat ventricular cardiomyocytes (NRVCMs) to validate the results. RESULTS: Mice in the LPS group, as compared to the control group, had lower left ventricular ejection fraction, left ventricular fractional shortening, left ventricular systolic pressure, and ±dp/dt, but a higher left ventricular end-diastolic pressure, while the serum expression of IL-1ß, IL-6, TNF-α, and cTn-T was up-regulated evidently with the increased apoptotic index of myocardial tissues. However, miR-141 and Bcl-2/Bax were down-regulated with elevated DAPK1 and cleaved caspase-3. The above changes were ameliorated in mice from the LPS + pre-miR-141 group relative to the LPS group, while those in the LPS + anti-miR-141 group were further deteriorated. In vitro experiment showed that miR-141 overexpression could reduce the apoptosis of LPS-induced NRVCMs and the levels of inflammatory cytokines with the increased cell viability. CONCLUSION: MiR-141 could decrease inflammatory response and reduce myocardial cell apoptosis by targeting DAPK1, thereby playing the promising protective role in SIC.


Subject(s)
Cardiomyopathies/therapy , Death-Associated Protein Kinases/antagonists & inhibitors , MicroRNAs/physiology , Sepsis/complications , Animals , Apoptosis , Cardiomyopathies/etiology , Cardiomyopathies/physiopathology , Cytokines/blood , Heart Function Tests , Hemodynamics , Inflammation Mediators/blood , Lipopolysaccharides/administration & dosage , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Rats , Rats, Sprague-Dawley , Sepsis/chemically induced , Sepsis/physiopathology
17.
Hum Psychopharmacol ; 36(5): e2790, 2021 09.
Article in English | MEDLINE | ID: mdl-33856697

ABSTRACT

BACKGROUND: Patients with schizophrenia have an increased prevalence of type 2 diabetes mellitus that has shown a significant association with the rs7754840 polymorphism in the gene encoding the cyclin-dependent kinase 5 (CDK5) regulatory subunit-associated protein 1-like 1 (CDKAL1). OBJECTIVE: To examine whether this polymorphism was involved in the susceptibility in first-episode drug-naive schizophrenic patients (FDSP), and further influenced their clinical symptoms. METHODS: This polymorphism was genotyped in 239 FDSP and 368 healthy controls. The clinical symptoms in FDSP were assessed using the Positive and Negative Syndrome Scale (PANSS) five-factor models. RESULTS: There was no significant difference in the allelic and genotypic frequencies of this polymorphism between two groups (both p > 0.05) after adjusting for covariates. However, the PANSS depressive score significantly differed by genotype in FDSP after adjusting for covariates (F = 5.25, p = 0.006). This significant difference also persisted after Bonferroni correction (p < 0.05). FDSP with C/C genotype had significantly higher PANSS depressive score than those with C/G genotype (p = 0.007) and those with G/G genotype (p = 0.005). Moreover, further stepwise multivariate regression analysis showed the significant association between the rs7754840 polymorphism and PANSS depressive score in FDSP (ß = -1.07, t = -2.75, p = 0.007). CONCLUSIONS: Our findings demonstrated that although the CDKAL1 rs7754840 polymorphism did not contribute to the susceptibility to FDSP, it might be implicated in depressive symptoms in this patient group.


Subject(s)
Depression , Diabetes Mellitus, Type 2 , Schizophrenia , Depression/complications , Depression/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Genotype , Humans , Polymorphism, Single Nucleotide/genetics , Schizophrenia/complications , Schizophrenia/genetics , tRNA Methyltransferases/genetics
18.
Front Immunol ; 12: 608723, 2021.
Article in English | MEDLINE | ID: mdl-33643312

ABSTRACT

Objective: Posner-Schlossman syndrome (PSS), also known as glaucomatocyclitic crisis, is an ocular condition characterized by recurrent attacks of anterior uveitis and raised intraocular pressure. Previous studies by our team and others have identified the genetic association of complement pathway genes with uveitis and glaucoma. This study aimed to investigate the complement genes in PSS patients with the view of elucidating the genetic background of the disease. Methods: A total of 331 subjects (56 PSS patients and 275 controls) were recruited for this study. We selected 27 variants in six complement pathway genes (SERPING1, C2, CFB, CFH, C3, and C5) and detected them using TaqMan single nucleotide polymorphism (SNP) Genotyping Assays. Univariate SNP association analysis, haplotype-based association analysis, gene-gene interaction analysis among complement genes, and genotype-phenotype correlation analysis were performed. Results: Among the 27 variants of six complement pathway genes, the functional variant I62V (rs800292) at the CFH gene was found to be significantly associated with PSS; there was a significant increase in the frequency of A allele and AA homozygosity in PSS patients than in controls (P = 1.79 × 10-4; odds ratio (OR) 2.18, 95% CI: 1.44-3.29; P = 4.65 × 10-4; OR 3.66, 95% CI: 1.70-7.85, respectively). The additive effect of CFH-rs800292 and SERPING1-rs3824988 was identified with an OR of 12.50 (95% CI: 2.16-72.28). Genotype-phenotype analysis indicated that the rs800292 AA genotype was associated with a higher intraocular pressure and higher frequency of recurrence. Unlike a high proportion of human leukocyte antigen (HLA)-B27 positivity in anterior uveitis, only 3 in 56 (5.36%) PSS patients were HLA-B27 positive. In addition, one haplotype block (GC) in the SERPING1 gene showed a nominal association with PSS with an increased risk of 2.04 (P = 0.01; 95% CI: 1.18-3.53), but the P-value could not withstand the Bonferroni correction (Pcorr > 0.05). Conclusion: This study revealed a genetic association of a CFH variant with PSS as well as its clinical parameters, implying that the alternative complement pathway might play an important role in the pathogenesis of PSS. Further studies to enrich the understanding of the genetic background of PSS and the role of the complement system in ocular inflammation are warranted.


Subject(s)
Alleles , Eye Diseases, Hereditary/diagnosis , Eye Diseases, Hereditary/genetics , Genetic Markers , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Adult , Case-Control Studies , Complement Factor H/genetics , Epistasis, Genetic , Female , Gene Frequency , Genetic Association Studies , Genotype , Humans , Linkage Disequilibrium , Male , Middle Aged , Odds Ratio , Phenotype
19.
Mar Biotechnol (NY) ; 23(2): 294-307, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33570690

ABSTRACT

In mammals, mature miR-122 is 22 nucleotides long and can be involved in regulating a variety of physiological and biological pathways. In this study, the expression profile and effects of grouper Epinephelus coioides miR-122 response to Singapore grouper iridovirus (SGIV) infection were investigated. The sequences of mature microRNAs (miRNAs) from different organisms are highly conserved, and miR-122 from E. coioides exhibits high similarity to that from mammals and other fish. The expression of miR-122 was up-regulated during SGIV infection. Up-regulation of miR-122 could significantly enhance the cytopathic effects (CPE) induced by SGIV, the transcription levels of viral genes (MCP, VP19, LITAF and ICP18), and viral replication; reduce the expression of inflammatory factors (TNF-a, IL-6, and IL-8), and the activity of AP-1 and NF-κB, and miR-122 can bind the target gene p38α MAPK to regulate the SGIV-induced cell apoptosis and the protease activity of caspase-3. The results indicated that SGIV infection can up-regulate the expression of E. coioides miR-122, and up-regulation of miR-122 can affect the activation of inflammatory factors, the activity of AP-1 and NF-κB, and cell apoptosis to regulate viral replication and proliferation.


Subject(s)
Bass/metabolism , Fish Diseases/virology , Iridovirus/metabolism , MicroRNAs/metabolism , Animals , Apoptosis , Bass/genetics , DNA Virus Infections/virology , Genes, Viral , Iridovirus/genetics , MicroRNAs/genetics , NF-kappa B , Transcription Factor AP-1 , Virus Replication
20.
Dev Comp Immunol ; 119: 104013, 2021 06.
Article in English | MEDLINE | ID: mdl-33465381

ABSTRACT

Programmed cell death 4 (PDCD4) in mammals, a gene closely associated with apoptosis, is involved in many biological processes, such as cell aging, differentiation, regulation of cell cycle, and inflammatory response. In this study, grouper Epinephelus coioides PDCD4, EcPDCD4-1 and EcPDCD4-2, were obtained. The open reading frame (ORF) of EcPDCD4-1 is 1413 bp encoding 470 amino acids with a molecular mass of 52.39 kDa and a theoretical pI of 5.33. The ORF of EcPDCD4-2 is 1410 bp encoding 469 amino acids with a molecular mass of 52.29 kDa and a theoretical pI of 5.29. Both EcPDCD4-1 and EcPDCD4-2 proteins contain two conserved MA3 domains, and their mRNA were detected in all eight tissues of E. coioides by quantitative real-time PCR (qRT-PCR) with the highest expression in liver. The expressions of two EcPDCD4s were significantly up-regulated after Singapore grouper iridovirus (SGIV) or Vibrio alginolyticus infection. In addition, over-expression of EcPDCD4-1 or EcPDCD4-2 can inhibit the activity of the nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), and regulate SGIV-induced apoptosis. The results demonstrated that EcPDCD4s might play important roles in E. coioides tissues during pathogen-caused inflammation.


Subject(s)
Apoptosis Regulatory Proteins/immunology , Fish Proteins/immunology , Gene Expression Regulation/immunology , Iridovirus/immunology , Perciformes/immunology , Vibrio alginolyticus/immunology , Amino Acid Sequence , Animals , Apoptosis/genetics , Apoptosis/immunology , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/genetics , Cloning, Molecular , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/virology , Fish Proteins/classification , Fish Proteins/genetics , Gene Expression Profiling , Host-Pathogen Interactions/immunology , Iridovirus/physiology , NF-kappa B/genetics , NF-kappa B/immunology , NF-kappa B/metabolism , Perciformes/microbiology , Perciformes/virology , Phylogeny , Protein Conformation , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Transcription Factor AP-1/genetics , Transcription Factor AP-1/immunology , Transcription Factor AP-1/metabolism , Vibrio alginolyticus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...