Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Diabetes Res ; 2024: 5661751, 2024.
Article in English | MEDLINE | ID: mdl-38988702

ABSTRACT

Purpose: Type 2 diabetes mellitus (T2DM) is associated with multiple neuropsychiatric impairments, including cognitive dysfunction, and melatonin (MLT) plays a crucial role in maintaining normal neuropsychiatric functions. This study is aimed at investigating the change in plasma MLT levels and its association with neuropsychiatric impairments in T2DM patients. Methods: One hundred twenty-six T2DM patients were recruited, and their demographics and clinical data were collected. Apart from the plasma glycated hemoglobin (HbA1c) levels and other routine metabolic indicators, the plasma concentrations of MLT, C-reactive protein (CRP), Interleukin 6 (IL-6), soluble myeloid triggered receptor 1 (sTREM 1), and receptor 2 (sTREM 2) were measured. Moreover, the executive function and depressive tendency were evaluated via the Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A) and the Epidemiological Research Center Depression Scale (CES-D), respectively. Result: Compared with the low HbA1c group, the T2DM patients in the high HbA1c group presented lower plasma MLT levels but higher plasma concentrations of inflammatory biomarker levels, together with higher scores in the BRIEF-A and CES-D scales. Moreover, results of the Pearson correlation test showed that the plasma MLT levels were negatively correlated with the BRIEF-A and CES-D scores, as well as plasma concentrations of HbA1c and inflammatory indications, indicating that MLT may mediate their neuroinflammation and neuropsychiatric impairments. Furthermore, the ROC curve results indicated that plasma MLT levels have a predictive effect on executive impairment and depressive status in T2DM patients. Conclusion: MLT levels decreased in patients with T2DM and were associated with neuropsychiatric impairments and inflammatory status, and MLT might be developed as a therapeutic agent and predictive indicator for T2DM-associated executive impairment and depression status.


Subject(s)
Biomarkers , Cognitive Dysfunction , Depression , Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Melatonin , Humans , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/psychology , Diabetes Mellitus, Type 2/complications , Melatonin/blood , Male , Female , Middle Aged , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis , Cognitive Dysfunction/blood , Cognitive Dysfunction/psychology , Depression/blood , Biomarkers/blood , Aged , Adult , Executive Function , C-Reactive Protein/metabolism , C-Reactive Protein/analysis
2.
Brain Res ; 1838: 148991, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38754803

ABSTRACT

BACKGROUND: The study aimed to investigate the potential pharmacological and toxicological differences between Vigabatrin (VGB) and its enantiomers S-VGB and R-VGB. The researchers focused on the toxic effects and antiepileptic activity of these compounds in a rat model. METHODS: The epileptic rat model was established by intraperitoneal injection of kainic acid, and the antiepileptic activity of VGB, S-VGB, and VGB was observed, focusing on the improvements in seizure latency, seizure frequency and sensory, motor, learning and memory deficits in epileptic rats, as well as the hippocampal expression of key molecular associated with synaptic plasticity and the Wnt/ß-catenin/GSK 3ß signaling pathway. The acute toxic test was carried out and the LD50 was calculated, and tretinal damages in epileptic rats were also evaluated. RESULT: The results showed that S-VGB exhibited stronger antiepileptic and neuroprotective effects with lower toxicity compared to VGB raceme. These findings suggest that S-VGB and VGB may modulate neuronal damage, glial cell activation, and synaptic plasticity related to epilepsy through the Wnt/ß-catenin/GSK 3ß signaling pathway. The study provides valuable insights into the potential differential effects of VGB enantiomers, highlighting the potential of S-VGB as an antiepileptic drug with reduced side effects. CONCLUSION: S-VGB has the highest antiepileptic effect and lowest toxicity compared to VGB and R-VGB.


Subject(s)
Anticonvulsants , Epilepsy , Vigabatrin , Wnt Signaling Pathway , Animals , Anticonvulsants/pharmacology , Vigabatrin/pharmacology , Rats , Male , Epilepsy/drug therapy , Epilepsy/chemically induced , Stereoisomerism , Wnt Signaling Pathway/drug effects , Kainic Acid/toxicity , Rats, Sprague-Dawley , Seizures/chemically induced , Seizures/drug therapy , Hippocampus/drug effects , Hippocampus/metabolism , Neuronal Plasticity/drug effects , Disease Models, Animal , Neuroprotective Agents/pharmacology , Glycogen Synthase Kinase 3 beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL