Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 62
Filter
Add more filters











Publication year range
1.
Biomacromolecules ; 25(9): 5454-5467, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39196319

ABSTRACT

The fundamental building block of living organisms is the cell, which is the universal biological base of all living entities. This micrometric mass of cytoplasm and the membrane border have fascinated scientists due to the highly complex and multicompartmentalized structure. This specific organization enables numerous metabolic reactions to occur simultaneously and in segregated spaces, without disturbing each other, but with a promotion of inter- and intracellular communication of biomolecules. At present, artificial nano- and microcompartments, whether as single components or self-organized in multicompartment architectures, hold significant value in the study of life development and advanced functional materials and in the fabrication of molecular devices for medical applications. These artificial compartments also possess the properties to encapsulate, protect, and control the release of bio(macro)molecules through selective transport processes, and they are capable of embedding or being connected with other types of compartments. The self-assembly mechanism of specific synthetic compartments and thus the fabrication of a simulated organelle membrane are some of the major aspects to gain insight. Considerable efforts have now been devoted to design various nano- and microcompartments and understand their functionality for precise control over properties. Of particular interest is the use of polymeric vesicles for communication in synthetic cells and colloidal systems to reinitiate chemical and biological communication and thus close the gap toward biological functions. Multicompartment systems can now be effectively created with a high level of hierarchical control. In this way, these structures can not only be explored to deepen our understanding of the functional organization of living cells, but also pave the way for many more exciting developments in the biomedical field.


Subject(s)
Artificial Cells , Polymers , Artificial Cells/chemistry , Artificial Cells/metabolism , Polymers/chemistry , Humans
2.
Biomacromolecules ; 25(7): 4440-4448, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38907698

ABSTRACT

Supramolecular delivery systems with the prolonged circulation, the potential for diverse functionalization, and few toxin-related limitations have been extensively studied. For the present study, we constructed a linear polyglycerol-shelled polymersome attached with the anti-HER-2-antibody trastuzumab. We then covalently loaded the anticancer drug DM1 in the polymersome via dynamic disulfide bonding. The resulted trastuzumab-polymersome-DM1 (Tra-PS-DM1) exhibits a mean size of 95.3 nm and remarkable drug loading efficiency % of 99.3%. In addition to its superior stability, we observed the rapid release of DM1 in a controlled manner under reductive conditions. Compared to the native polymersomes, Tra-PS-DM1 has shown greatly improved cellular uptake and significantly reduced IC50 up to 17-fold among HER-2-positive cancer cells. Moreover, Tra-PS-DM1 demonstrated superb growth inhibition of HER-2-positive tumoroids; specifically, BT474 tumoroids shrunk up to 62% after 12 h treatment. With exceptional stability and targetability, the PG-shelled Tra-PS-DM1 appears as an attractive approach for HER-2-positive tumor treatment.


Subject(s)
Breast Neoplasms , Glycerol , Polymers , Receptor, ErbB-2 , Trastuzumab , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Glycerol/chemistry , Female , Polymers/chemistry , Trastuzumab/pharmacology , Trastuzumab/chemistry , Trastuzumab/administration & dosage , Receptor, ErbB-2/metabolism , Cell Line, Tumor , Drug Delivery Systems/methods , Ado-Trastuzumab Emtansine/pharmacology
3.
Biomacromolecules ; 25(7): 4569-4580, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38869359

ABSTRACT

Acute myeloid leukemia (AML) is often associated with poor prognosis and survival. Small molecule inhibitors, though widening the treatment landscape, have limited monotherapy efficacy. The combination therapy, however, shows suboptimal clinical outcomes due to low bioavailability, overlapping systemic toxicity and drug resistance. Here, we report that CXCR4-mediated codelivery of the BCL-2 inhibitor venetoclax (VEN) and the FLT3 inhibitor sorafenib (SOR) via T22 peptide-tagged disulfide cross-linked polymeric micelles (TM) achieves synergistic treatment of FLT3-ITD AML. TM-VS with a VEN/SOR weight ratio of 1/4 and T22 peptide density of 20% exhibited an extraordinary inhibitory effect on CXCR4-overexpressing MV4-11 AML cells. TM-VS at a VEN/SOR dosage of 2.5/10 mg/kg remarkably reduced leukemia burden, prolonged mouse survival, and impeded bone loss in orthotopic MV4-11-bearing mice, outperforming the nontargeted M-VS and oral administration of free VEN/SOR. CXCR4-mediated codelivery of BCL-2 and FLT3 inhibitors has emerged as a prospective clinical treatment for FLT3-ITD AML.


Subject(s)
Leukemia, Myeloid, Acute , Proto-Oncogene Proteins c-bcl-2 , Receptors, CXCR4 , Sorafenib , Sulfonamides , fms-Like Tyrosine Kinase 3 , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/genetics , Animals , Receptors, CXCR4/antagonists & inhibitors , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Humans , Mice , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology , Sulfonamides/administration & dosage , Sorafenib/pharmacology , Sorafenib/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Line, Tumor , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Micelles
4.
Biomater Sci ; 11(14): 4985-4994, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37334506

ABSTRACT

Multiple myeloma (MM) is a neoplasm of aberrant plasma cells and ranks second among hematologic malignancies. Despite a substantial improvement in clinical outcomes with advances in therapeutic modalities over the past two decades, MM remains incurable, necessitating the development of new and potent therapies. Herein, we engineered a daratumumab-polymersome-DM1 conjugate (DPDC) based highly potent and CD38-selective immuno-nano-DM1 toxin for depleting MM cells in vivo. DPDC with controllable daratumumab density and disulfide-linked DM1 is of small size (51-56 nm), with high stability and reduction-triggered DM1 release. D6.2PDC potently inhibited the proliferation of CD38-overexpressed LP-1 and MM.1S MM cells with IC50 values of 2.7 and 1.2 ng DM1 equiv. per mL, about 4-fold stronger than non-targeted PDC. Moreover, D6.2PDC effectively and safely depleted LP-1-Luc MM cells in an orthotopic mouse model at a low DM1 dosage of 0.2 mg kg-1, thus alleviating osteolytic bone lesion and extending the median survival by 2.8-3.5-fold compared to all controls. This CD38-selective DPDC provides a safe and potent treatment strategy for MM.


Subject(s)
Hematologic Neoplasms , Multiple Myeloma , Mice , Animals , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , ADP-ribosyl Cyclase 1 , Cell Line, Tumor
5.
Adv Mater ; 35(32): e2209984, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37321606

ABSTRACT

Acute myeloid leukemia (AML) is afflicted by a high-mortality rate and few treatment options. The lack of specific surface antigens severely hampers the development of targeted therapeutics and cell therapy. Here, it is shown that exogenous all-trans retinoic acid (ATRA) mediates selective and transient CD38 upregulation on leukemia cells by up to 20-fold, which enables high-efficiency targeted nanochemotherapy of leukemia with daratumumab antibody-directed polymersomal vincristine sulfate (DPV). Strikingly, treatment of two CD38-low expressing AML orthotopic models with ATRA and DPV portfolio strategies effectively eliminates circulating leukemia cells and leukemia invasion into bone marrow and organs, leading to exceptional survival benefits with 20-40% of mice becoming leukemia-free. The combination of exogenous CD38 upregulation and antibody-directed nanotherapeutics provides a unique and powerful targeted therapy for leukemia.


Subject(s)
Leukemia, Myeloid, Acute , Antineoplastic Agents/therapeutic use , Up-Regulation , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/immunology , Antibodies/therapeutic use , Antigens/immunology , Humans , Animals , Mice , ADP-ribosyl Cyclase 1/immunology , Tretinoin/therapeutic use
6.
Comput Intell Neurosci ; 2023: 8288527, 2023.
Article in English | MEDLINE | ID: mdl-37284055

ABSTRACT

An online policy learning algorithm is used to solve the optimal control problem of the power battery state of charge (SOC) observer for the first time. The design of adaptive neural network (NN) optimal control is studied for the nonlinear power battery system based on a second-order (RC) equivalent circuit model. First, the unknown uncertainties of the system are approximated by NN, and a time-varying gain nonlinear state observer is designed to address the problem that the resistance capacitance voltage and SOC of the battery cannot be measured. Then, to realize the optimal control, a policy learning-based online algorithm is designed, where only the critic NN is required and the actor NN widely used in most design of the optimal control methods is removed. Finally, the effectiveness of the optimal control theory is verified by simulation.


Subject(s)
Neural Networks, Computer , Nonlinear Dynamics , Algorithms , Computer Simulation , Electric Power Supplies
8.
J Control Release ; 350: 122-131, 2022 10.
Article in English | MEDLINE | ID: mdl-35973474

ABSTRACT

Transarterial chemoembolization (TACE) with free doxorubicin-lipiodol emulsions (free DOX/L) is a favored clinical treatment for advanced hepatocellular carcinoma (HCC) patients ineligible for radical therapies; however, its inferior colloidal stability not only greatly reduces its tumor retention but also hastens drug release into blood circulation, leading to suboptimal clinical outcomes. Here, we find that disulfide-crosslinked polymersomes carrying doxorubicin (Ps-DOX) form super-stable and homogenous water-in-oil microemulsions with lipiodol (Ps-DOX/L). Ps-DOX/L microemulsions had tunable sizes ranging from 14 to 44 µm depending on the amount of Ps-DOX, were stable over 2 months storage as well as centrifugation, and exhibited nearly zero-order DOX release within 15 days. Of note, Ps-DOX induced 2.3-13.4 fold better inhibitory activity in all tested rat, murine and human liver tumor cells than free DOX likely due to its efficient redox-triggered intracellular drug release. Interestingly, transarterial administration of Ps-DOX/L microemulsions in orthotopic rat N1S1 syngeneic HCC model showed minimal systemic DOX exposure, high and long hepatic DOX retention, complete tumor elimination, effective inhibition of angiogenesis, and depleted adverse effects, significantly outperforming clinically used free DOX/L emulsions. This smart polymersome stabilization of doxorubicin-lipiodol microemulsions provides a novel TACE strategy for advanced tumors.


Subject(s)
Carcinoma, Hepatocellular , Chemoembolization, Therapeutic , Liver Neoplasms , Animals , Antibiotics, Antineoplastic/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Disulfides , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Emulsions/therapeutic use , Ethiodized Oil/therapeutic use , Humans , Liver Neoplasms/drug therapy , Mice , Rats , Water
10.
Biomacromolecules ; 23(1): 100-111, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34913340

ABSTRACT

Targeted nanomedicines particularly armed with monoclonal antibodies are considered to be the most promising advanced chemotherapy for malignant cancers; however, their development is hindered by their instability and drug leakage problems. Herein, we constructed a robust cetuximab-polymersome-mertansine nanodrug (C-P-DM1) for highly potent and targeted therapy of epidermal growth factor receptor (EGFR)-positive solid tumors. C-P-DM1 with a tailored cetuximab surface density of 2 per P-DM1 exhibited a size of ca. 60 nm, high stability with minimum DM1 leakage, glutathione-triggered release of native DM1, and 6.0-11.3-fold stronger cytotoxicity in EGFR-positive human breast (MDA-MB-231), lung (A549), and liver (SMMC-7721) cancer cells (IC50 = 27.1-135.5 nM) than P-DM1 control. Notably, intravenous injection of C-P-DM1 effectively repressed subcutaneous MDA-MB-231 breast cancer and orthotopic A549-Luc lung carcinoma in mice without inducing toxic effects. Strikingly, intratumoral injection of C-P-DM1 completely cured 60% of mice bearing breast tumor without recurrence. This robust cetuximab-polymersome-mertansine nanodrug provides a promising new strategy for targeted treatment of EGFR-positive solid malignancies.


Subject(s)
Breast Neoplasms , Cetuximab , Maytansine , Nanoparticles , Animals , Antibodies, Monoclonal , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cetuximab/pharmacology , ErbB Receptors/metabolism , Female , Humans , Maytansine/pharmacology , Mice , Nanoparticles/metabolism , Nanoparticles/therapeutic use
11.
Biomacromolecules ; 23(1): 377-387, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34913676

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most common malignancy in children. Although intensive chemotherapy greatly improved the survival rate, it is often accompanied by severe and lifelong side effects as a result of weak ALL selectivity. The intensive and poorly selective chemotherapy is also detrimental to patients' immune system. There is an urgent need to develop more selective and less toxic chemotherapy for ALL. Here, we report daratumumab-polymersome-vincristine (DP-VCR) as a CD38-directed nanotherapy for ALL. DP-VCR showed selective uptake in CD38-positive 697 and Nalm-6-Luc ALL cells and potent anti-ALL activity with an IC50 as low as 0.06 nM VCR, which was 13.7-fold more potent than free VCR. In contrast, no toxicity to human peripheral blood mononuclear cells was detected for DP-VCR even at 108.3 nM VCR. The apoptotic assays confirmed a high selectivity of DP-VCR to CD38-positive ALL cells. DP-VCR exhibited superior treatment of both 697 and Nalm-6-Luc orthotopic ALL models to all controls, as revealed by significant survival benefit and marked reduction of leukemia burden in bone marrow, blood, spleen, and liver. Importantly, DP-VCR induced few side effects. DP-VCR emerges as a safe and potent nanotherapy for CD38-positive ALL.


Subject(s)
Leukocytes, Mononuclear , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Cell Count , Child , Humans , Leukocytes, Mononuclear/pathology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Vincristine/pharmacology , Vincristine/therapeutic use
12.
J Control Release ; 340: 331-341, 2021 12 10.
Article in English | MEDLINE | ID: mdl-34774889

ABSTRACT

Antibody-drug conjugates (ADCs) are among the most significant advances in clinical cancer treatments, however, they are haunted with fundamental issues like low drug/antibody ratio (DAR), need of large amount of antibody, and complex chemistry. Targeted nanomedicines while offering a promising alternative to ADCs are afflicted with drug leakage and inferior cancer-specificity. Herein, we developed an intelligent cell-selective nanotoxin based on anti-CD44 antibody-polymersome-DM1 conjugates (aCD44-AP-DM1) for potent treatment of solid tumors. DM1 was simultaneously coupled to vesicular membrane via disulfide bonds during self-assembly and anti-CD44 antibody was facilely clicked onto polymersome surface, tailor-making an optimal aCD44-AP-DM1 with a controlled antibody density of 5.0, extraordinary DAR of 275, zero drug leakage and rapid reduction-responsive DM1 release. aCD44-AP-DM1 displayed a high specificity and exceptional cytotoxicity toward MDA-MB-231 triple negative breast cancer, SMMC-7721 hepatocellular carcinoma and A549 non-small cell lung cancer cells with half-maximal inhibitory concentrations (IC50) of 21.4, 3.7 and 64.6 ng/mL, respectively, 3.6-47.2-fold exceeding non-targeted P-DM1. Intriguingly, the systemic administration of aCD44-AP-DM1 significantly suppressed subcutaneous MDA-MB-231 tumor xenografts in nude mice while intratumoral injection achieved complete tumor eradication in four out of five mice, without causing toxicity. This intelligent cell-selective nanotoxin has emerged as a better platform over ADCs for targeted cancer therapy.


Subject(s)
Breast Neoplasms , Carcinoma, Non-Small-Cell Lung , Immunoconjugates , Lung Neoplasms , Maytansine , Triple Negative Breast Neoplasms , Animals , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , Trastuzumab , Triple Negative Breast Neoplasms/drug therapy
13.
Adv Mater ; 33(39): e2007787, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34369013

ABSTRACT

Multiple myeloma (MM) is a second ranking hematological malignancy. Despite the fast advancement of new treatments such as bortezormib and daratumumab, MM patients remain incurable and tend to eventually become relapsed and drug-resistant. Development of novel therapies capable of depleting MM cells is strongly needed. Here, daratumumab immunopolymersomes carrying vincristine sulfate (Dar-IPs-VCR) are reported for safe and high-efficacy CD38-targeted chemotherapy and depletion of orthotopic MM in vivo. Dar-IPs-VCR made by postmodification via strain-promoted click reaction holds tailored antibody density (2.2, 4.4 to 8.7 Dar per IPs), superb stability, small size (43-49 nm), efficacious VCR loading, and glutathione-responsive VCR release. Dar4.4 -IPs-VCR induces exceptional anti-MM activity with an IC50 of 76 × 10-12 m to CD38-positive LP-1 MM cells, 12- and 20-fold enhancement over nontargeted Ps-VCR and free VCR controls, respectively. Intriguingly, mice bearing orthotopic LP-1-Luc MM following four cycles of i.v. administration of Dar4.4 -IPs-VCR at 0.25 mg VCR equiv. kg-1 reveal complete depletion of LP-1-Luc cells, superior survival rate to all controls, and no body weight loss. The bone and histological analyses indicate bare bone and organ damage. Dar-IPs-VCR appears as a safe and targeted treatment for CD38-overexpressed hematological malignancies.


Subject(s)
ADP-ribosyl Cyclase 1/immunology , Antibodies, Monoclonal/immunology , Antineoplastic Agents, Phytogenic/therapeutic use , Multiple Myeloma/drug therapy , ADP-ribosyl Cyclase 1/metabolism , Animals , Antibodies, Monoclonal/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Humans , Mice , Mice, Nude , Nanomedicine , Nanostructures/chemistry , Particle Size , Tibia/pathology , Transplantation, Heterologous , Vincristine/chemistry
15.
J Mater Chem B ; 8(31): 6866-6876, 2020 08 12.
Article in English | MEDLINE | ID: mdl-32249886

ABSTRACT

Engineering nanoparticles (NPs) with multifunctionality has become a promising strategy for cancer theranostics. Herein, theranostic polymer NPs are fabricated via the assembly of amphiphilic paramagnetic block copolymers (PCL-b-PIEtMn), in which IR-780 and doxorubicin (DOX) were co-encapsulated, for magnetic resonance (MR) and near infrared fluorescence (NIRF) imaging as well as for photo thermal therapy (PTT)-enhanced chemotherapy. The synthesized amphiphilic paramagnetic block copolymers demonstrated high relaxivity (r1 = 7.05 mM-1 s-1). The encapsulated DOX could be released with the trigger of near infrared (NIR) light. In vivo imaging confirmed that the paramagnetic NPs could be accumulated effectively at the tumor sites. Upon the NIR laser irradiation, tumor growth was inhibited by PTT-enhanced chemotherapy. The advantages of the reported system lie in the one-step convergence of multiple functions (i.e., imaging and therapy agents) into a one delivery vehicle and the dual mode imaging-guided synergistic PTT and chemotherapy. This study represents a new drug delivery vehicle of paramagnetic NPs for visualized theranostics.


Subject(s)
Hydrophobic and Hydrophilic Interactions , Magnets/chemistry , Polymers/chemistry , Polymers/therapeutic use , Doxorubicin/pharmacology , Drug Synergism , Humans , MCF-7 Cells , Nanoparticles/chemistry , Optical Imaging , Phototherapy
16.
Biomacromolecules ; 21(1): 104-113, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31532629

ABSTRACT

Metastasis is responsible for >90% of the deaths of breast cancer patients in the clinic. Here, we report on cross-linked multifunctional hyaluronic acid nanoparticles carrying docetaxel (DTX-CMHN) for enhanced suppression of highly metastatic 4T1 breast tumors in vivo. DTX-CMHN was formed from a single and all-natural hyaluronic acid-g-polytyrosine-lipoic acid conjugate (HA-g-PTyr-LA; HA, 20 kDa; PTyr, 2.2 kDa), and the size of DTX-CMHN increased from 69 to 78 to 96 nm as the increasing degree of substitution (DS) of PTyr increased from 4 to 11 to 15, respectively. Robust encapsulation of DTX was obtained when DS ≥ 11. DTX-CMHN while steady in a nonreducing environment was destabilized under 10 mM glutathione releasing ∼90% of the DTX within 24 h. It is noteworthy that DTX-CMHN exhibited better antitumor, antimigration, and anti-invasion activity in CD44-overexpressed 4T1-Luc breast cancer cells than free DTX. Interestingly, DTX-CMHN displayed a long elimination half-life of 5.75 h, in contrast to half-lives of 2.11 and 0.75 h for its non-cross-linked counterpart (DTX-MHN) and free DTX, respectively. In vivo therapeutic studies showed significantly better inhibition of primary 4T1-Luc tumor growth and lung metastasis and lower toxicity of DTX-CMHN compared with that of free DTX. These multifunctional nanoformulations based on a single and all-natural hyaluronic acid conjugate emerge as a potential nanoplatform for targeted treatment of CD44-positive metastatic tumors.


Subject(s)
Antineoplastic Agents/administration & dosage , Breast Neoplasms/drug therapy , Hyaluronan Receptors , Nanoparticles/chemistry , Animals , Antineoplastic Agents/pharmacokinetics , Breast Neoplasms/pathology , Docetaxel/administration & dosage , Docetaxel/pharmacokinetics , Drug Carriers/administration & dosage , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Drug Delivery Systems/methods , Female , Humans , Hyaluronic Acid , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/secondary , Mice , Molecular Targeted Therapy/methods , Nanomedicine/methods , Nanoparticles/administration & dosage , Thioctic Acid/chemistry , Tissue Distribution , Tyrosine/chemistry , Xenograft Model Antitumor Assays
17.
ACS Macro Lett ; 9(9): 1292-1302, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-35638634

ABSTRACT

The development of smart polymer vehicles to carry and release cytotoxic drugs to tumor tissues and cells while reducing the exposure of drugs in the blood and healthy organs is a highly challenging task with continuously growing interest from multiple fields, including polymer science, pharmaceutical science, nanotechnology, and clinical oncology. Inspired by the unique tumor microenvironment, such as mild acidity and overexpressed enzymes, functional polymer prodrugs and nanoparticles with reversible charge, detachable PEG shell, activatable ligand, and switchable size have been designed to enhance tumor deposition, tumor penetration, tumor cell uptake, and tumoral drug release. Utilizing biological signals inside tumor cells, such as acidic endo/lysosomal pH, elevated glutathione levels, and reactive oxygen species, responsive polymer prodrugs and nanoparticles with good extracellular stability but fast intracellular disintegration have been engineered for specific intracellular drug release. These biological stimuli-sensitive polymer prodrugs and nanoparticles have shown superior specificity and therapeutic efficacy to nonsensitive counterparts and, in certain cases, even clinically approved systems in varying tumor models. In this Viewpoint, design strategies and recent advances of biological stimuli-responsive polymer prodrugs and nanoparticles for tumor-specific drug delivery will be highlighted, and their challenges and future perspectives will be discussed.

19.
ACS Appl Mater Interfaces ; 11(50): 46548-46557, 2019 Dec 18.
Article in English | MEDLINE | ID: mdl-31763810

ABSTRACT

Actively targeted nanomedicines have promised to revolutionize cancer treatment; however, their clinical translation has been limited by either low targetability, use of unsafe materials, or tedious fabrication. Here, we developed CD44 and folate receptor (FR) dually targeted nanoparticulate doxorubicin (HA/FA-NP-DOX) based on a direct conjugate of two purely natural ligands, hyaluronic acid and folic acid (FA), for safe, highly specific, and potent treatment of ovarian tumors in vivo. HA/FA-NP-DOX had a small size and high DOX loading, wherein the particle size decreased from 115, 93, to 89 nm with increasing degree of substitution of FA from 6.4, 8.5, to 11.1, while increased from 80, 93, to 103 nm with increasing DOX loading from 15.0, 23.1, to 31.4 wt %. Interestingly, HA/FA-NP-DOX exhibited excellent lyophilization redispersibility and long-term storage stability with negligible drug leakage while it released 91% of DOX in 48 h at pH 5.0. Cellular studies corroborated that HA/FA-NP-DOX possessed high selectivity to both CD44 and FR, resulting in strong killing of CD44- and FR-positive SKOV-3 ovarian cancer cells while low toxicity against CD44- and FR-negative L929 fibroblast cells. In vivo studies revealed a long elimination half-life of 5.6 h, an elevated tumor accumulation of 12.0% ID/g, and an effective inhibition of the SKOV-3 ovarian tumor for HA/FA-NP-DOX, leading to significant survival benefits over free DOX·HCl and phosphate-buffered saline controls. These dually targeted nanomedicines are simple and safe, providing a potentially translatable treatment for CD44- and FR-positive malignancies.


Subject(s)
Doxorubicin/pharmacology , Drug Delivery Systems , Nanoparticles/chemistry , Ovarian Neoplasms/drug therapy , Animals , Cell Line, Tumor , Doxorubicin/chemistry , Female , Folate Receptor 1/antagonists & inhibitors , Folate Receptor 1/genetics , Humans , Hyaluronan Receptors/antagonists & inhibitors , Hyaluronan Receptors/genetics , Ligands , Mice , Nanomedicine/methods , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Xenograft Model Antitumor Assays
20.
Biomacromolecules ; 20(12): 4299-4311, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31659901

ABSTRACT

Nanomedicines are deemed as the most promising treatment modality for malignant cancers. Particularly, cancer nanomedicines based on synthetic polypeptides have gained interest because they possess excellent safety, unique hierarchical structure, and tailorable functionalities to suit for delivery of diverse drugs including synthetic drugs, peptides, proteins, and nucleic acids. A few polypeptide-based nanoformulations (e.g., NK105, NC6004, NK911, CT2103) are under phases I-III clinical investigation for treating patients with advanced solid tumors. In recent years, progress has been made in the development of robust and high drug loading, tumor-targeting, membrane-disrupting, and stimuli-sensitive nanomedicines from de novo functional polypeptides, which afford not only better safety and reduced adverse effects, but also further improved anticancer efficacy over clinical formulations. Moreover, virus-mimicking vehicles have been devised from polypeptides for efficient nonviral delivery of highly potent peptides, proteins, and nucleic acids, greatly advancing biotherapy for cancers. In this Perspective, we highlight the state-of-the-art design and fabrication of cancer nanomedicines based on synthetic polypeptides and, at the end, give our viewpoints on their future development for targeted cancer therapy and potential challenges for clinical translation.


Subject(s)
Antineoplastic Agents , Drug Delivery Systems , Nanomedicine , Nanoparticles , Neoplasms , Peptides , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Humans , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Peptides/chemical synthesis , Peptides/chemistry , Peptides/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL