Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Materials (Basel) ; 15(24)2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36556635

ABSTRACT

The irredeemable magnetic losses of Sm(Co, Fe, Zr, Cu)7.8 permanent magnets caused by oxidation are very important for their practical application. In this work, the simulated results with R2 ≥ 98% based on the data of the temperature cycling test and the long-term isothermal test for the original samples confirmed that the magnetic flux losses reached 9.38% after the 5000th cycle in range R.T.-300 °C, and 7.15% after oxidated at 180 °C for 10 years, respectively. Demagnetization curves showed that the low-temperature oxidation mainly led to the remanence attenuation, while the coercivity remained relatively stable. SEM observation and EDS analysis revealed that an oxide outer layer with a thickness of 1.96 µm was formed on the surface of the original sample at 180 °C for 180 days, in which there was no enrichment or precipitation of metal elements. However, once a Cu, O-rich outer layer with a thickness of 0.72 µm was grown by using a temperature cycling from -50-250 °C for three cycles, the attenuation of magnetic properties could be inhibited under the low-temperature oxidation. This work suggested that the magnetic attenuation of Sm2Co17-type permanent magnets in the low-temperature field could not be ignored, and provided a simple method to suppress this attenuation of magnetic properties below 300 °C.

2.
Front Nutr ; 9: 957745, 2022.
Article in English | MEDLINE | ID: mdl-36204370

ABSTRACT

Fenvalerate residues in fruits and vegetables may result in biological immune system disorders. Current sensor detection methods are harsh due to the shortcomings of antibody preparation and preservation conditions. Therefore, developing a recognition material with strong specificity, good stability, and low cost is of practical significance in designing a sensitive, simple, and rapid method. This study used precipitation polymerization to synthesize molecularly imprinted polymers (MIPs). The MIP was prepared into a fiber membrane using the electrostatic spinning method. After that, the fenvalerate hapten-mouse IgG-Eu fluorescent probe was synthesized, and the side flow chromatography strip was constructed to determine fenvalerate in vegetables using the immunocompetition method. The results showed that the adsorption capacity of MIP to fenvalerate was 3.65, and the adsorption capacity on MIPFM (an electrospinning membrane containing the fenvalerate MIPs) was five times that of free MIP. The test strip showed good linearity with R 2 = 0.9761 within the range of 50 µg/L-1,000 µg/L. In conclusion, substituting fenvalerate monoclonal antibodies with a molecularly imprinted electrospinning membrane is ideal for rapid onsite detection of pyrethroids.

3.
J Environ Public Health ; 2022: 6442241, 2022.
Article in English | MEDLINE | ID: mdl-36254309

ABSTRACT

Herein, porous Co3O4 nanoneedle arrays were synthesized on nickel (Ni) foam (Co3O4 NNs/NF) by one-step hydrothermal method. Some electrochemical methods were used to investigate its nonenzymatic glucose sensing performance in alkaline solution. The results show that the sensitivity of Co3O4 NNs/NF electrode to glucose is 4570 µA mM-1 cm-2. The linear range is 1 µM-0.337 mM, and the detection limit is 0.91 µM (S/N = 3). It also displays good selectivity and repeatability for glucose. The good electrochemical sensing performance of Co3O4 NNs/NF based sensor for glucose can be attributed to interconnected porous structure and large specific surface area of Co3O4.


Subject(s)
Biosensing Techniques , Nickel , Biosensing Techniques/methods , Cobalt , Glucose/chemistry , Nickel/chemistry , Oxides , Porosity
4.
Food Chem ; 362: 130118, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34082296

ABSTRACT

Organophosphate pesticides (OPs) are often used as insecticides and acaricides in agriculture, thus improving yields. OP residues may pose a serious threat, duetoinhibitionof the enzymeacetylcholinesterase(AChE). Therefore, a competitive bio-barcode immunoassay was designed for simultaneous quantification of organophosphate pesticide residues using AuNP signal amplification technology and Au@Pt catalysis. The AuNP probes were labelled with antibodies and corresponding bio-barcodes (ssDNAs), MNP probes coated with ovalbumin pesticide haptens and Au@Pt probes functionalized with the complementary ssDNAs were then prepared. Subsequently, pesticides competed with MNP probes to bind the AuNP probes. The recoveries of the developed assay were ranged from 71.26 to 117.47% with RSDs from 2.52 to 14.52%. The LODs were 9.88, 3.91, and 1.47 ng·kg-1, for parathion, triazophos, and chlorpyrifos, respectively. The assay was closely correlated with the data obtained from LC-MS/MS. Therefore, the developed method has the potential to be used as an alternative approach for detection of multiple pesticides.


Subject(s)
Food Contamination/analysis , Immunoassay/methods , Metal Nanoparticles/chemistry , Pesticide Residues/analysis , Catalysis , Chlorpyrifos/analysis , Chromatography, Liquid , Food Analysis/methods , Gold/chemistry , Immunoassay/instrumentation , Limit of Detection , Organophosphorus Compounds/analysis , Organothiophosphates/analysis , Oxazines/chemistry , Parathion/analysis , Platinum/chemistry , Tandem Mass Spectrometry , Triazoles/analysis
5.
J Chromatogr A ; 1647: 462143, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-33957346

ABSTRACT

Molecularly imprinting polymers with high selectivity toward 29 sulfonylurea herbicides were synthesized by precipitation polymerization, using metsulfuron-methyl and chlorsulfuron as the template molecule, 4-vinylpyridine as the function monomer, divinylbenzene as the crosslinking agent, and acetonitrile as porogen. The imprinted polymers were characterized and measured by scanning electron microscopy (SEM) and equilibrium adsorption experiments. The molecularly imprinted polymers displayed specific recognition for the tested 29 sulfonylurea herbicides, and the maximum apparent binding capacity was found to be 18.81 mg/g. The synthesized polymer was used as a solid-phase extraction (SPE) column coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS) for determination of the tested analytes in agro-products. Within the range of 2-100 µg/L, the tested analytes have achieved a good linear association with correlation coefficient (R2) > 0.999. The calculated limits of detection (LODs, S/N=3) as along with limits of quantification (LOQs, S/N=10) were in the ranges of 0.005-0.07 µg/L and 0.018-0.23 µg/L, respectively. Under different spiking levels, the recovery rates were ranged from 74.8% - 110.5%, and the relative standard deviation (RSDs) were < 5.3%. Finally, the feasibility of the proposed methodology was successfully applied for detection of sulfonylurea herbicides in crops, vegetables, and oils samples.


Subject(s)
Herbicides , Molecular Imprinting/methods , Molecularly Imprinted Polymers/chemistry , Solid Phase Extraction/methods , Sulfonylurea Compounds , Agriculture , Chromatography, Liquid , Herbicides/analysis , Herbicides/chemistry , Herbicides/isolation & purification , Limit of Detection , Linear Models , Reproducibility of Results , Sulfonylurea Compounds/analysis , Sulfonylurea Compounds/chemistry , Sulfonylurea Compounds/isolation & purification , Tandem Mass Spectrometry
6.
Talanta ; 225: 122031, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33592760

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is a powerful and high-speed detection technology. It provides information on molecular fingerprint recognition with ultrahigh sensitive detection. However, it shows poor anti-interference capacity against complex matrices. Molecularly imprinted polymers (MIPs) can achieve specific recognition of targets from complex matrices. Through introducing the MIP separation system, the MIP-SERS chemical sensor can effectively overcome the limitation of complex matrix interference, and further improve the stability of sensors for detection. Herein, the materials and structures of integrated MIP-SERS sensors are systematically reviewed, and its application as a sensor for chemical detection of hazardous substances in environmental and food samples has been addressed as well. To broaden the prospects of application, we have discussed the current challenges and future perspectives that would accelerate the development of versatile MIP-SERS chemical sensors.

7.
Scanning ; 2017: 2189614, 2017.
Article in English | MEDLINE | ID: mdl-29379582

ABSTRACT

Plastic deformations, such as those obtained by shot peening on specimen surface, are an efficient way to improve the mechanical behavior of metals. Generally, scanning electron microscopy (SEM) and electron backscattered diffraction (EBSD) are commonly used to observe the complex microstructural evolutions, such as grain refinement and phase transformation, induced by the surface treatment. In this work, the microstructure of 347 stainless steel, after ultrasonic shot peening (USP) treatments, was investigated. SEM, EBSD, transmission electron microscopy, and X-ray diffraction were used to observe the microstructural evolutions, such as grain refinement and phase transformation. Deformation depth after the USP treatment was about 200 µm. Grain size on the treated surface layer was about 100 nm, with two phases: austenite and α'-martensite. The percentages of the austenite and α'-martensite phases were 54% and 46%, respectively, which constitute an exact expression of the degree of plastic deformation on austenitic stainless steel.

8.
Scanning ; 2017: 1928198, 2017.
Article in English | MEDLINE | ID: mdl-29430276

ABSTRACT

A nanocrystalline layer was prepared on the surface of 34CrMo4 steel by time controlling shot peening (SP, i.e., 1, 5, 10, and 20 minutes). Field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) analysis, and transmission electron microscope (TEM) were applied to analyze the surface, cross-sections, and grain size of the specimens before and after SP. The electrochemical corrosion behavior was used to simulate a liquid under the oil and gas wells environment. It was characterized by the potentiodynamic polarization test and electrochemical impedance spectroscopy (EIS). The analysis results show that the surfaces of the SP samples were very rough and had numerous cracks. A passive film on SP surface was formed by nanocrystalline grains. However, the passive film formed in the initial stage was not dense or uniform, and cracks occurred in the passive film during peening, resulting in a decrease in corrosion resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...