Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Psychophysiology ; 61(4): e14463, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37855121

ABSTRACT

Both psychological resilience and creativity are complex concepts that have positive effects on individual adaptation. Previous studies have shown overlaps between the key brain regions or brain functional networks related to psychological resilience and creativity. However, no direct experimental evidence has been provided to support the assumption that psychological resilience and creativity share a common brain basis. Therefore, the present study investigated the relationship between psychological resilience and creativity using neural imaging method with a machine learning approach. At the behavioral level, we found that psychological resilience was positively related to creative personality. Predictive analysis based on static functional connectivity (FC) and dynamic FC demonstrated that FCs related to psychological resilience could effectively predict an individual's creative personality score. Both the static FC and dynamic FC were mainly located in the default mode network. These results prove that psychological resilience and creativity share a common brain functional basis. These findings also provide insights into the possibility of promoting individual positive adaptation from negative events or situations in a creative way.


Subject(s)
Connectome , Resilience, Psychological , Humans , Magnetic Resonance Imaging/methods , Brain , Creativity , Brain Mapping/methods
2.
Neuropsychologia ; 181: 108487, 2023 03 12.
Article in English | MEDLINE | ID: mdl-36669695

ABSTRACT

Recent studies and reviews suggest that creative thinking is at least partly a domain-general cognitive ability, dependent on consistent patterns of brain activity including co-activation of the executive control and default mode networks. However, the degree to which the generation of ideas in different creative tasks relies on common brain activity remains unknown. In this fMRI study, participants were asked to generate creative ideas in both a uses generation task and a metaphor production task. Whole-brain analysis showed that generation of creative uses (relative to conventional uses) activated the bilateral inferior frontal gyrus (IFG), medial prefrontal cortex, left supplementary motor area, left angular gyrus (AG), left thalamus, and bilateral cerebellum posterior lobe. The generation of creative metaphors (relative to conventional metaphors) activated dorsal medial prefrontal cortex (dmPFC) and left AG. Importantly, regions active in both creative use and creative metaphor generation included the dmPFC and left AG. Psycho-physiological interactions analysis showed that the left AG was positively connected to the right precentral gyrus, and the dmPFC to the left IFG in both creative tasks. Our findings provide evidence that the generation of creative ideas relies on a core creative network related to remote semantic association-making and conceptual integration, offering new insight into the domain-general mechanisms underlying creative thinking.


Subject(s)
Brain , Metaphor , Humans , Brain/diagnostic imaging , Brain/physiology , Executive Function/physiology , Creativity , Brain Mapping , Magnetic Resonance Imaging
3.
Cereb Cortex ; 33(8): 4964-4976, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36218835

ABSTRACT

Creativity, the ability to generate original and valuable products, has long been linked to semantic retrieval processes. The associative theory of creativity posits flexible retrieval ability as an important basis for creative idea generation. However, there is insufficient research on how flexible memory retrieval acts on creative activities. This study aimed to capture different dynamic aspects of retrieval processes and examine the behavioral and neural associations between retrieval flexibility and creativity. We developed 5 metrics to quantify retrieval flexibility based on previous studies, which confirmed the important role of creativity. Our findings showed that retrieval flexibility was positively correlated with multiple creativity-related behavior constructs and can promote distinct search patterns in different creative groups. Moreover, high flexibility was associated with the lifetime of a specific brain state during rest, characterized by interactions among large-scale cognitive brain systems. The flexible functional connectivity within and between default mode, executive control, and salience provides further evidence on brain dynamics of creativity. Retrieval flexibility mediated the links between the lifetime of the related brain state and creativity. This new approach is expected to enhance our knowledge of the role of retrieval flexibility in creativity from a dynamic perspective.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Creativity , Brain , Semantics
4.
Psychophysiology ; 60(4): e14209, 2023 04.
Article in English | MEDLINE | ID: mdl-36325626

ABSTRACT

Self-control is a core psychological construct for human beings and it plays a crucial role in the adaptation to society and achievement of success and happiness for individuals. Although progress has been made in behavioral studies examining self-control, its neural mechanisms remain unclear. In this study, we employed a machine-learning approach-relevance vector regression (RVR) to explore the potential predictive power of intrinsic functional connections to trait self-control in a large sample (N = 390). We used resting-state functional MRI (fMRI) to explore whole-brain functional connectivity patterns characteristic of 390 healthy adults and to confirm the effectiveness of RVR in predicting individual trait self-control scores. A set of connections across multiple neural networks that significantly predicted individual differences were identified, including the classic control network (e.g., fronto-parietal network (FPN), salience network (SAL)), the sensorimotor network (Mot), and the medial frontal network (MF). Key nodes that contributed to the predictive model included the dorsolateral prefrontal cortex (dlPFC), middle frontal gyrus (MFG), anterior cingulate and paracingulate gyri, inferior temporal gyrus (ITG) that have been associated with trait self-control. Our findings further assert that self-control is a multidimensional construct rooted in the interactions between multiple neural networks.


Subject(s)
Brain Mapping , Brain , Adult , Humans , Brain/diagnostic imaging , Frontal Lobe , Gyrus Cinguli , Individuality , Neural Pathways , Magnetic Resonance Imaging/methods
5.
Neuroscience ; 503: 107-117, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36115516

ABSTRACT

Everyday creativity is the basic ability of human survival and penetrates every aspect of life. Nevertheless, the neural mechanisms underlying everyday creativity was largely unexplored. In this study, seventy-five participants completed the creative behaviour inventory, a tool for assessing creative behaviour in daily life. The participants also completed the alternate uses task (AUT) during an electroencephalography (EEG) assessment to evaluate creative thinking. Alpha power was used to quantify neural oscillations during the creative process, while alpha coherence was used to quantify information communication between frontal regions and other sites during creative ideation. Moreover, these two task-related quantitative measures were combined to investigate the relationship between individual differences in everyday creativity and EEG alpha activity during creative idea generation. Compared with the reference period, increased alpha power was observed in the frontal cortex of the right hemisphere and increased functional coupling was observed between frontal and parietal/temporal regions during the activation period. Interestingly, individual differences in everyday creativity were associated with distinct patterns of EEG alpha activity. Specifically, individuals with higher everyday creativity had increased alpha power in the frontal cortex, and increased changes in coherence in frontal-temporal regions of the right hemisphere while performing the AUT. It might indicate that individuals with higher everyday creativity had an enhanced ability to focus on internal information processing and control bottom-up stimuli, as well as better selection of novel semantic information when performing creative ideation tasks.


Subject(s)
Brain , Creativity , Humans , Brain/physiology , Electroencephalography/methods , Cognition , Individuality , Brain Mapping
6.
Neuroscience ; 504: 56-62, 2022 11 10.
Article in English | MEDLINE | ID: mdl-35964835

ABSTRACT

Intelligence is the ability to recognize and understand objective things, and use knowledge and experience to solve problems. Highly intelligent people show the ability to switch between different thought patterns and shift their mental focus. This suggests a link between intelligence and the dynamic interaction of brain networks. Thus, we investigated the relationships between resting-state dynamic brain network remodeling (temporal variability) and scores on the Wechsler Adult Intelligent Scale using a large dataset comprising 606 individuals. We found that performance intelligence was associated with greater temporal variability in the functional connectivity patterns of the dorsal attention network. High variability in these areas indicates flexible connectivity patterns, which may contribute to cognitive processes such as attention selection. In addition, performance intelligence was related to greater temporal variability in the functional connectivity patterns of the salience network. Thus, this study revealed a close relationship between performance intelligence and high variability in brain networks involved in attentional choice, spatial orientation, and cognitive control.


Subject(s)
Brain , Magnetic Resonance Imaging , Adult , Humans , Neural Pathways/diagnostic imaging , Brain/diagnostic imaging , Brain Mapping , Intelligence
7.
Am Psychol ; 77(6): 760-769, 2022 09.
Article in English | MEDLINE | ID: mdl-35862107

ABSTRACT

Stressful life events are significant risk factors for depression, and increases in depressive symptoms have been observed during the COVID-19 pandemic. The aim of this study is to explore the neural makers for individuals' depression during COVID-19, using connectome-based predictive modeling (CPM). Then we tested whether these neural markers could be used to identify groups at high/low risk for depression with a longitudinal dataset. The results suggested that the high-risk group demonstrated a higher level and increment of depression during the pandemic, as compared to the low-risk group. Furthermore, a support vector machine (SVM) algorithm was used to discriminate major depression disorder patients and healthy controls, using neural features defined by CPM. The results confirmed the CPM's ability for capturing the depression-related patterns with individuals' resting-state functional connectivity signature. The exploration for the anatomy of these functional connectivity features emphasized the role of an emotion-regulation circuit and an interoception circuit in the neuropathology of depression. In summary, the present study augments current understanding of potential pathological mechanisms underlying depression during an acute and unpredictable life-threatening event and suggests that resting-state functional connectivity may provide potential effective neural markers for identifying susceptible populations. (PsycInfo Database Record (c) 2022 APA, all rights reserved).


Subject(s)
COVID-19 , Connectome , Depressive Disorder, Major , Brain/diagnostic imaging , Connectome/methods , Depression , Humans , Individuality , Magnetic Resonance Imaging/methods , Pandemics
8.
Trends Cogn Sci ; 26(10): 849-859, 2022 10.
Article in English | MEDLINE | ID: mdl-35868956

ABSTRACT

Creative problem solving (CPS) in real-world contexts often relies on reorganization of existing knowledge to serve new, problem-relevant functions. However, classic creativity paradigms that minimize knowledge content are generally used to investigate creativity, including CPS. We argue that CPS research should expand consideration of knowledge-rich problem contexts, both in novices and experts within specific domains. In particular, paradigms focusing on creative analogical transfer of knowledge may reflect CPS skills that are applicable to real-world problem solving. Such paradigms have begun to provide process-level insights into cognitive and neural characteristics of knowledge-rich CPS and point to multiple avenues for fruitfully expanding inquiry into the role of crystalized knowledge in creativity.


Subject(s)
Creativity , Problem Solving , Humans
9.
Cereb Cortex ; 32(23): 5273-5284, 2022 11 21.
Article in English | MEDLINE | ID: mdl-35136988

ABSTRACT

INTRODUCTION: Human brain network is organized as a hierarchical organization, exhibiting various connectome gradients. The principal gradient is anchored by the modality-specific primary areas and the transmodal regions. Previous studies have suggested that the unimodal-transmodal gradient in the functional connectome may offer an overarching framework for high-order cognitions of human brain. However, there is still a lacking of direct evidence to associate these two. OBJECTIVES: Therefore, we aim to explore the association between creativity, a typical human high-order cognitive function, and unimodal-transmodal gradient, using two independent datasets of young adults. METHODS: For each individual, we identified the unimodal-transmodal gradient in functional connectome and calculated its global measures. Then we correlated the individual creativity score with measures of unimodal-transmodal gradient at global-brain, subsystem, and regional level. RESULTS: The results suggested that better creative performance was associated with greater distance between primary areas and transmodal regions in gradient axes, and less distance between ventral attention network and default mode network. Individual creativity was also found positively correlated with regional gradients in ventral attention network, and negatively correlated with gradients of regions in visual cortex. CONCLUSION: Together, these findings directly link the unimodal-transmodal gradient to individual creativity, providing empirical evidence for the cognitive implications of functional connectome gradient.


Subject(s)
Connectome , Young Adult , Humans , Magnetic Resonance Imaging/methods , Creativity , Brain/diagnostic imaging , Cognition
10.
Brain Imaging Behav ; 16(3): 1400-1409, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35041138

ABSTRACT

Thought suppression, which is defined as an effort "not to think about" a particular thought, is essential to maintain good mental health. Despite previous functional imaging studies on thought suppression and related functional activity, the neural basis of thought suppression in individual difference is still unclear. Many studies have focused on the relationship between neuroticism and thought suppression; however, the neural basis of this relationship is not well known. Thus, in the present study, we investigated the neural basis of thought suppression and further explored the neural mechanisms underlying the relationship between neuroticism and thought suppression. The first step was to use voxel-based morphometry (VBM) to investigate the neuroanatomical basis of thought suppression in healthy subjects. We found a significant positive correlation between thought suppression and the gray matter volume (GMV) of the right superior frontal gyrus (SFG). The second step was to use resting-state functional connectivity (rsFC) to investigate the neural functional basis of thought suppression. The results showed that thought suppression was positively correlated with rsFC between the right SFG and the left middle temporal gyrus (MTG). Interestingly, the relationship between neuroticism and thought suppression was mediated by the strength of rsFC between the right SFG and the left MTG. The results suggest that better ability to suppress unwanted intrusive thoughts is supported by greater GMV of the right SFG and stronger functional connectivity between the SFG and MTG. They also indicate that weak rsFC between the SFG and MTG can partly explain the negative association between neuroticism and thought suppression.


Subject(s)
Gray Matter , Magnetic Resonance Imaging , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Neuroticism , Prefrontal Cortex/diagnostic imaging , Temporal Lobe/diagnostic imaging
11.
Psychol Med ; 52(5): 813-823, 2022 04.
Article in English | MEDLINE | ID: mdl-32654675

ABSTRACT

BACKGROUND: Many emotional experiences such as anxiety and depression are influenced by negative affect (NA). NA has both trait and state features, which play different roles in physiological and mental health. Attending to NA common to various emotional experiences and their trait-state features might help deepen the understanding of the shared foundation of related emotional disorders. METHODS: The principal component of five measures was calculated to indicate individuals' NA level. Applying the connectivity-based correlation analysis, we first identified resting-state functional connectives (FCs) relating to NA in sample 1 (n = 367), which were validated through an independent sample (n = 232; sample 2). Next, based on the variability of FCs across large timescale, we further divided the NA-related FCs into high- and low-variability groups. Finally, FCs in different variability groups were separately applied to predict individuals' neuroticism level (which is assumed to be the core trait-related factor underlying NA), and the change of NA level (which represents the state-related fluctuation of NA). RESULTS: The low-variability FCs were primarily within the default mode network (DMN) and between the DMN and dorsal attention network/sensory system and significantly predicted trait rather than state NA. The high-variability FCs were primarily between the DMN and ventral attention network, the fronto-parietal network and DMN/sensory system, and significantly predicted the change of NA level. CONCLUSIONS: The trait and state NA can be separately predicted by stable and variable spontaneous FCs with different attentional processes and emotion regulatory mechanisms, which could deepen our understanding of NA.


Subject(s)
Brain , Magnetic Resonance Imaging , Anxiety Disorders , Brain Mapping , Humans , Neural Pathways , Phenotype
12.
Hum Brain Mapp ; 43(3): 902-914, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34676650

ABSTRACT

Daydreaming and creativity have similar cognitive processes and neural basis. However, few empirical studies have examined the relationship between daydreaming and creativity using cognitive neuroscience methods. The present study explored the relationship between different types of daydreaming and creativity and their common neural basis. The behavioral results revealed that positive constructive daydreaming is positively related to creativity, while poor attentional control is negatively related to it. Machine learning framework was adopted to examine the predictive effect of daydreaming-related brain functional connectivity (FC) on creativity. The results demonstrated that task FCs related to positive constructive daydreaming and task FCs related to poor attentional control both predicted an individual's creativity score successfully. In addition, task FCs combining the positive constructive daydreaming and poor attentional control also had significant predictive effect on creativity score. Furthermore, predictive analysis based on resting-state FCs showed similar patterns. Both of the subscale-related FCs and combined FCs had significant predictive effect on creativity score. Further analysis showed the task and the resting-state FCs both mainly located in the default mode network, central executive network, salience network, and attention network. These results showed that daydreaming was closely related to creativity, as they shared common FC basis.


Subject(s)
Attention/physiology , Cerebral Cortex/physiology , Connectome , Creativity , Fantasy , Magnetic Resonance Imaging , Adolescent , Adult , Cerebral Cortex/diagnostic imaging , Connectome/methods , Connectome/standards , Female , Humans , Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/standards , Male , Young Adult
13.
Brain Struct Funct ; 226(8): 2511-2521, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34430997

ABSTRACT

Recent neuroimaging studies demonstrate that creativity is related to brain regions across both hemispheres, and the corpus callosum forms the structural basis of inter-hemispheric information exchange. However, the findings regarding the relationship between inter-hemispheric interaction and creativity remain inconsistent, which may be caused by different types of creativity and neural features being adopted. To clarify the inconsistency, and understand how inter-hemispheric interactions are related to different kinds of creativity, we explored the correlation between eight structural measures of the corpus callosum (CC) and two different domains of creativity [verbal creativity (VerC) and visual creativity (VisC)] using a large healthy-adult sample (n = 446). The results showed that VerC was positively correlated with fractional anisotropy (FA) and negatively correlated with the radial diffusivity (RD) of CC; whereas there was no significant association between VisC and CC measures. These results persisted after regressing VisC from VerC, regressing VerC from VisC, and regress out general intelligence from both creativity measures. In summary, we showed that the structural properties of corpus collosum are associated in different ways with two domains of creativity, i.e., verbal creativity and visual creativity, which enriches our understanding of the underlying neural mechanism in different types of creativity.


Subject(s)
Corpus Callosum , Diffusion Tensor Imaging , Anisotropy , Brain , Corpus Callosum/diagnostic imaging , Creativity
14.
Neuroimage ; 225: 117469, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33099006

ABSTRACT

While a recent upsurge in the application of neuroimaging methods to creative cognition has yielded encouraging progress toward understanding the neural underpinnings of creativity, the neural basis of barriers to creativity are as yet unexplored. Here, we report the first investigation into the neural correlates of one such recently identified barrier to creativity: anxiety specific to creative thinking, or creativity anxiety (Daker et al., 2019). We employed a machine-learning technique for exploring relations between functional connectivity and behavior (connectome-based predictive modeling; CPM) to investigate the functional connections underlying creativity anxiety. Using whole-brain resting-state functional connectivity data, we identified a network of connections or "edges" that predicted individual differences in creativity anxiety, largely comprising connections within and between regions of the executive and default networks and the limbic system. We then found that the edges related to creativity anxiety identified in one sample generalize to predict creativity anxiety in an independent sample. We additionally found evidence that the network of edges related to creativity anxiety were largely distinct from those found in previous work to be related to divergent creative ability (Beaty et al., 2018). In addition to being the first work on the neural correlates of creativity anxiety, this research also included the development of a new Chinese-language version of the Creativity Anxiety Scale, and demonstrated that key behavioral findings from the initial work on creativity anxiety are replicable across cultures and languages.


Subject(s)
Anxiety/physiopathology , Brain/physiology , Brain/physiopathology , Connectome/psychology , Creativity , Adult , Humans , Individuality , Machine Learning , Magnetic Resonance Imaging , Male , Nerve Net
15.
Neuroimage ; 227: 117632, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33316392

ABSTRACT

Creative thinking is a hallmark of human cognition, which enables us to generate novel and useful ideas. Nevertheless, its emergence within the macro-scale neurocognitive circuitry remains largely unknown. Using resting-state fMRI data from two large population samples (SWU: n = 931; HCP: n = 1001) and a novel "travelling pattern prediction analysis", here we identified the modularized functional connectivity patterns linked to creative thinking ability, which concurrently explained individual variability across ordinary cognitive abilities such as episodic memory, working memory and relational processing. Further interrogation of this neural pattern with graph theoretical tools revealed both hub-like brain structures and globally-efficient information transfer paths that together may facilitate higher creative thinking ability through the convergence of distinct cognitive operations. Collectively, our results provide reliable evidence for the hypothesized emergence of creative thinking from core cognitive components through neural integration, and thus allude to a significant theoretical advancement in the study of creativity.


Subject(s)
Brain/diagnostic imaging , Cognition/physiology , Creativity , Nerve Net/diagnostic imaging , Thinking/physiology , Adult , Brain/physiology , Connectome , Female , Humans , Magnetic Resonance Imaging , Male , Nerve Net/physiology
16.
Front Hum Neurosci ; 14: 492990, 2020.
Article in English | MEDLINE | ID: mdl-33281578

ABSTRACT

Stress-related psychosomatic responses are viewed as important risks to our physical health. Growing evidence from structural imaging studies has implicated that stress and trauma exposures have negative effects on brain structural alterations. However, whether stress-related emotional distress and somatic symptoms are related to the structure of brain systems remains unclear. Also, stress-related somatic symptoms have adverse effects on emotional distress. In turn, emotional distress may influence somatic symptom reports via negative cognitive bias. However, whether this relationship is mediated by specific brain morphology remains poorly understood. First, we used voxel-based morphometric approaches to investigate the neuroanatomical basis underlying somatic symptoms and emotional distress in a large sample of healthy subjects (ages 18-27 years). We found that relatively high stress-related somatic symptoms were associated with reduced gray matter volumes (GMVs) in the ventral medial prefrontal cortex (vmPFC), anterior insula, somatosensory cortex, hippocampus, and amygdala. Furthermore, a moderator analysis was performed to investigate the impact of recent stressful life events (moderators) on the association between specific GMVs (independent variables) and emotional distress (dependent variables). Interestingly, high levels of emotional distress were associated with small volumes of the vmPFC, anterior insula, hippocampus, and amygdala in participants with experience with more recent stressful life events. Finally, we performed mediation analyses to investigate the specific brain areas that mediate the association between emotional distress and somatic symptoms. The results showed that the effect of emotional distress on somatic symptoms is mediated by reductions in the volume of the hippocampus, the impact of somatic symptoms on emotional distress is mediated by the volume of the vmPFC. These results provided evidence that higher stress-related somatic symptoms are associated with smaller volume in prefrontal, insula, and limbic regions involved in emotion, interoception, and memory processing. The vmPFC and hippocampus play different roles in the relationship between emotional distress and somatic symptoms.

17.
Brain Imaging Behav ; 14(5): 1498-1506, 2020 Oct.
Article in English | MEDLINE | ID: mdl-30868403

ABSTRACT

Creativity is very important and is linked to almost all areas of our everyday life. Improving creativity brings great benefits. Various strategies and training paradigms have been used to stimulate creative thinking. These training approaches have been confirmed to be effective. However, whether or not training can reshape the resting-state brain is still unclear. The present study examined whether or not the divergent thinking training intervention can reshape the resting-state brain functional connectivity (FC). Static seed-based and dynamic approaches were used to explore this problem. Results demonstrate significant changes in static and dynamic FCs. FCs, such as dorsal anterior cingulate cortex-inferior parietal lobule, dorsal anterior cingulate cortex-precuneus and left and right dorsolateral prefrontal cortex, was significantly improved through the training. Furthermore, the temporal variability of the supplementary motor area and middle temporal gyrus was improved. These results indicate that divergent thinking training may lead to resting-state brain plasticity. Considering the role of these regions in brain networks, the present study further confirms the close relationship between the brain networks' dynamic interactions and divergent thinking processes.


Subject(s)
Magnetic Resonance Imaging , Thinking , Brain/diagnostic imaging , Brain Mapping , Creativity , Humans
18.
Cereb Cortex ; 30(2): 708-717, 2020 03 21.
Article in English | MEDLINE | ID: mdl-31233102

ABSTRACT

Creativity is the ability to generate original and useful products, and it is considered central to the progression of human civilization. As a noninherited emerging process, creativity may stem from temporally dynamic brain activity, which, however, has not been well studied. The purpose of this study was to measure brain dynamics using entropy and to examine the associations between brain entropy (BEN) and divergent thinking in a large healthy sample. The results showed that divergent thinking was consistently positively correlated with regional BEN in the left dorsal anterior cingulate cortex/pre-supplementary motor area and left dorsolateral prefrontal cortex, suggesting that creativity is closely related to the functional dynamics of the control networks involved in cognitive flexibility and inhibitory control. Importantly, our main results were cross-validated in two independent cohorts from two different cultures. Additionally, three dimensions of divergent thinking (fluency, flexibility, and originality) were positively correlated with regional BEN in the left inferior frontal gyrus and left middle temporal gyrus, suggesting that more highly creative individuals possess more flexible semantic associative networks. Taken together, our findings provide the first evidence of the associations of regional BEN with individual variations in divergent thinking and show that BEN is sensitive to detecting variations in important cognitive abilities in healthy subjects.


Subject(s)
Brain/physiology , Creativity , Thinking/physiology , Adolescent , Adult , Brain Mapping/methods , Female , Gyrus Cinguli/physiology , Humans , Magnetic Resonance Imaging , Male , Motor Cortex/physiology , Prefrontal Cortex/physiology , Young Adult
19.
Neuropsychologia ; 136: 107289, 2020 01.
Article in English | MEDLINE | ID: mdl-31794711

ABSTRACT

From a traditional variable-centered perspective, the personality traits specifically linked to depressive symptoms are neuroticism, extraversion, and conscientiousness (NEC). Few studies have considered the interactive effects of personality traits within individuals from the taxonomic perspective. We explored novel NEC personality subtypes in general and subthreshold depressive subjects by using graph-based classification algorithms and multiple external validators. Personality and depressive symptoms were assessed in 1055 healthy subjects (150 with subthreshold depression) using the NEO-PI-R and BDI at baseline. NEC personality data were used to identify subtypes in healthy and subthreshold depressive samples, and external validators, including current and longitudinal depressive symptoms and seven subcortical gray matter volumes, were examined. Four novel NEC personality types in the general sample showed superior current and longitudinal behavioral validation of depressive symptoms as well as some discrimination in biological indicators (putamen, nucleus accumbens, and amygdala). Four profiles defined in subthreshold depression selectively exhibited meaningful differences in longitudinal depressive symptoms. In both samples, some types adhere to the principles previously described NEC three-way interaction. The resulting typology, especially the four types in the general population, linked depressive symptoms provided a superior description of within-person organization of neuroticism, extraversion, and conscientiousness.


Subject(s)
Amygdala/diagnostic imaging , Depression/physiopathology , Neostriatum/diagnostic imaging , Personality/physiology , Adolescent , Adult , Extraversion, Psychological , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Neuroticism , Personality/classification , Young Adult
20.
Psychophysiology ; 56(12): e13464, 2019 12.
Article in English | MEDLINE | ID: mdl-31453642

ABSTRACT

Advances in graph-theoretic models of networks have made it possible to investigate the topological properties of the human brain across time and space. Brain flexibility is defined as the frequency with which brain regions switch between different functional modules over time and has been shown to correlate with higher-order cognitive functions. Need for cognition (NFC) refers to a personality trait to engage in and enjoy effortful cognitive endeavors and usually has a positive effect on diverse cognitive activities (e.g., creativity), which may also be closely related to brain flexibility. Here, we tested whether the flexibility of a large-scale brain network associated with NFC facilitated creative achievement. Robust correlation analyses showed that NFC correlates with the flexibility of the insula, the medial prefrontal cortex, and the putamen at the node level. Several large-scale brain networks whose flexibility also correlated with NFC, including the default mode network, salience network, subcortical network, ventral attention network, and control network, imply that higher NFC individuals may exhibit better cognitive abilities, such as executive control, salient detection, spontaneous thought, and motivation function. Interestingly, only global flexibility acted as a mediator in the relationship between NFC and creative achievement, suggesting that the mediating mechanism may involve an interaction between distinct regions or large-scale networks across the entire brain instead of the functional characteristic of local regions. Together, we demonstrate that the higher NFC is, the more flexible the brain, which may provide a potential insight into the acquisition of creative achievement.


Subject(s)
Brain Mapping/methods , Brain/physiology , Creativity , Executive Function/physiology , Nerve Net/physiology , Personality/physiology , Achievement , Adolescent , Adult , Atlases as Topic , Brain/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...