Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Waste Manag ; 186: 1-10, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38833785

ABSTRACT

The continued growth in demand for mineral resources has led to a large amount of mining wastes, which is a major challenge in the context of carbon neutrality and climate change. In this study, runoff migration, batch leaching, and column experiments were used to investigate the short-, medium-, and long-term leaching of heavy metals from legacy tailings, respectively; the cumulative metal release kinetic equations were established, and the long-term effects of tailings leaching were verified by HYDRUS-1D. In runoff migration experiments, surface dissolution of tailings and the co-migration of adsorbed soil particles by erosion were the main carriers in the early stages of leachate formation (Mn âˆ¼ 65 mg/L and SO42- up to 2697.2 mg/L). Batch leaching tests showed that the concentration of heavy metals in soil leached by acid rain were 0.1 âˆ¼ 22.0 µg/L for Cr, 0.7 âˆ¼ 26.0 µg/L for Cu, 4.8 âˆ¼ 5646.0 µg/L for Mn, 0.3 âˆ¼ 232.4 µg/L for Ni, and 1.3 âˆ¼ 448.0 µg/L for Zn. The results of column experiments indicated that some soluble components and metals with high mobility showed a significant decreasing trend at cumulative L/S ≤ 2. Additionally, the metals have higher leaching rates under TCLP conditions, as shown by Mn > Co > Zn > Cd > Ni > Cu > Pb > Cr. The fitting results of Langmuir equation were closer to the cumulative release of metals in the real case, and the release amounts of Mn, Zn, Co, and Ni were higher with 55, 5.84, 2.66, and 2.51 mg/kg, respectively. The water flow within tailings affects the spatial distribution of metals, which mainly exist in relatively stable chemical fractions (F3 + F4 + F5 > 90 %) after leaching. Numerical simulation verified that Mn in leachate has reached 8 mg/L at a scale of up to 100 years. The research results are expected to provide technical basis for realizing the resource utilization of tailings in the future.

2.
Chemosphere ; 358: 142177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679182

ABSTRACT

Tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-butoxyethyl) phosphate (TBEP) as pollutants of emerging concern have aroused the rising attention due to their potential risks on aquatic ecosystem and public health. Nevertheless, there is a lack of toxicological mechanisms exploration of TCPP and TBEP at molecular levels. Herein, the toxicity effects and molecular mechanism of them were fully researched and summarized on Escherichia coli (E.coli). Acute exposure to them significantly activated antioxidant defense system and caused lipid peroxidation, as proved by the changes of antioxidant enzymes and MDA. The ROS overload resulted in the drop of membrane potential as well as the downregulated synthesis of ATPase, endorsing that E. coli cytotoxicity was ascribed to oxidative stress damage induced by TCPP and TBEP. The combination of GC-MS and LC-MS based metabolomics validated that TCPP and TBEP induced metabolic reprogramming in E.coli. More specifically, the responsive metabolites in carbohydrate metabolism, lipids metabolism, nucleotide metabolism, amino acid metabolism, and organic acids metabolism were significantly disturbed by TCPP and TBEP, confirming the negative effects on metabolic functions and key bioprocesses. Additionally, several biomarkers including PE(16:1(5Z)/15:0), PA(17:1(9Z)/18:2(9Z,12Z)), PE(19:1(9Z)/0:0), and LysoPE(0:0/18:1(11Z)) were remarkably upregulated, verifying that the protection of cellular membrane was conducted by regulating the expression of lipids-associated metabolites. Collectively, this work sheds new light on the potential molecular toxicity mechanism of TCPP and TBEP on aquatic organisms, and these findings using GC-MS and LC-MS metabolomics generate a fresh insight into assessing the effects of OPFRs on target and non-target aquatic organisms.


Subject(s)
Biomarkers , Escherichia coli , Gas Chromatography-Mass Spectrometry , Metabolomics , Oxidative Stress , Biomarkers/metabolism , Escherichia coli/drug effects , Lipid Peroxidation/drug effects , Liquid Chromatography-Mass Spectrometry , Organophosphates/toxicity , Organophosphorus Compounds/toxicity , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity
3.
Toxics ; 12(4)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38668509

ABSTRACT

Organophosphate esters (OPEs) are frequently used as flame retardants and plasticizers in various commercial products. While initially considered as substitutes for brominated flame retardants, they have faced restrictions in some countries due to their toxic effects on organisms. We collected 37 soil and crop samples in 20 cities along the coast of South China, and OPEs were detected in all of them. Meanwhile, we studied the contamination and potential human health risks of OPEs. In soil samples, the combined concentrations of eight OPEs varied between 74.7 and 410 ng/g, averaging at 255 ng/g. Meanwhile, in plant samples, the collective concentrations of eight OPEs ranged from 202 to 751 ng/g, with an average concentration of 381 ng/g. TDCIPP, TCPP, TCEP, and ToCP were the main OPE compounds in both plant and soil samples. Within the study area, the contaminants showed different spatial distributions. Notably, higher OPEs were found in coastal agricultural soils in Guangdong Province and crops in the Guangxi Zhuang Autonomous Region. The results of an ecological risk assessment show that the farmland soil along the southern coast of China is at high or medium ecological risk. The average non-carcinogenic risk and the carcinogenic risk of OPEs in soil through ingestion and dermal exposure routes are within acceptable levels. Meanwhile, this study found that the dietary intake of OPEs through food is relatively low, but twice as high as other studies, requiring serious attention. The research findings suggest that the human risk assessment indicates potential adverse effects on human health due to OPEs in the soil-plant system along the coast of South China. This study provides a crucial foundation for managing safety risks in agricultural operations involving OPEs.

4.
Sci Total Environ ; 918: 170857, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38340847

ABSTRACT

Sulfonamide antibiotics, extensively used in human and veterinary therapy, accumulate in agroecosystem soils through livestock manure and sewage irrigation. However, the interaction between sulfonamides and rice plants remains unclear. This study investigated the transformation behavior and toxicity of sulfamethoxazole (SMX) and its main metabolite, N4-acetyl-sulfamethoxazole (NASMX) in rice. SMX and NASMX were rapidly taken up by roots and translocated acropetally. NASMX showed higher accumulating capacity, with NASMX concentrations up to 20.36 ± 1.98 µg/g (roots) and 5.62 ± 1.17 µg/g (shoots), and with SMX concentrations up to 15.97 ± 2.53 µg/g (roots) and 3.22 ± 0.789 µg/g (shoots). A total of 18 intermediate transformation products of SMX were identified by nontarget screening using Orbitrap-HRMS, revealing pathways such as deamination, hydroxylation, acetylation, formylation, and glycosylation. Notably, NASMX transformed back into SMX in rice, a novel finding. Transcriptomic analysis highlights the involvements of cytochrome P450 (CYP450), acetyltransferase (ACEs) and glycosyltransferases (GTs) in these biotransformation pathways. Moreover, exposure to SMX and NASMX disrupts TCA cycle, amino acid, linoleic acid, nucleotide metabolism, and phenylpropanoid biosynthesis pathways of rice, with NASMX exerting a stronger impact on metabolic networks. These findings elucidate the sulfonamides' metabolism, phytotoxicity mechanisms, and contribute to assessing food safety and human exposure risk amid antibiotic pollution.


Subject(s)
Oryza , Sulfamethoxazole , Humans , Sulfamethoxazole/toxicity , Sulfamethoxazole/chemistry , Oryza/metabolism , Anti-Bacterial Agents/chemistry , Sulfonamides , Soil/chemistry , Sulfanilamide
5.
Chem Asian J ; 19(3): e202300962, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38214502

ABSTRACT

Superhydrophilic/oleophobic materials are considered to be the best materials for achieving oil-water separation, but their preparation is difficult and the existing methods are not universal. In this paper, a two-step modification strategy was used to prepare superhydrophilic/oleophobic sponges by adjusting the polar and nonpolar components of the materials using mussel-inspired chemistry. While remaining superhydrophilic, the modified sponge surface has a maximum contact angle of 135° with different oils in air. The modified sponge exhibited superoleophobicity in water, and the contact angle of oil could reach more than 150°. In addition, the modified sponges were also reusable, chemically stable, and mechanically durable. Its oil-water separation flux was up to 24900 Lm-2 h-1 bar-1 , and the separation efficiency was above 97 %. We believe that this method will provide an environmentally friendly and efficient way to prepare the superhydrophilic/oleophobic materials.

6.
Environ Sci Technol ; 58(1): 510-521, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38100654

ABSTRACT

Fluorinated liquid crystal monomers (FLCMs) have been suggested as emerging contaminants, raising global concern due to their frequent occurrence, potential toxic effects, and endurance capacity in the environment. However, the environmental fate of the FLCMs remains unknown. To fill this knowledge gap, we investigated the aerobic microbial transformation mechanisms of an important FLCM, 4-[difluoro(3,4,5-trifluorophenoxy)methyl]-3, 5-difluoro-4'-propylbiphenyl (DTMDPB), using an enrichment culture termed as BG1. Our findings revealed that 67.5 ± 2.1% of the initially added DTMDPB was transformed in 10 days under optimal conditions. A total of 14 microbial transformation products obtained due to a series of reactions (e.g., reductive defluorination, ether bond cleavage, demethylation, oxidative hydroxylation and aromatic ring opening, sulfonation, glucuronidation, O-methylation, and thiolation) were identified. Consortium BG1 harbored essential genes that could transform DTMDPB, such as dehalogenation-related genes [e.g., glutathione S-transferase gene (GST), 2-haloacid dehalogenase gene (2-HAD), nrdB, nuoC, and nuoD]; hydroxylating-related genes hcaC, ubiH, and COQ7; aromatic ring opening-related genes ligB and catE; and methyltransferase genes ubiE and ubiG. Two DTMDPB-degrading strains were isolated, which are affiliated with the genus Sphingopyxis and Agromyces. This study provides a novel insight into the microbial transformation of FLCMs. The findings of this study have important implications for the development of bioremediation strategies aimed at addressing sites contaminated with FLCMs.


Subject(s)
Liquid Crystals , Biodegradation, Environmental , Hydroxylation
7.
Environ Sci Technol ; 57(24): 8870-8882, 2023 06 20.
Article in English | MEDLINE | ID: mdl-37260373

ABSTRACT

Our understanding is limited concerning the interaction mechanism between widespread phthalate esters and staple crops, which have strong implications for human exposure. Therefore, this study was aimed at illuminating the transformation pathways of di-n-butyl phthalate (DnBP) in rice using an untargeted screening method. UPLC-QTOF-MS identified 16 intermediate transformation products formed through hydroxylation, hydrolysis, and oxidation in phase I metabolism and further by conjugation with amino acids, glutathione, and carbohydrates in phase II metabolism. Mono-2-hydroxy-n-butyl phthalate-l-aspartic acid (MHBP-asp) and mono-2-hydroxy-n-butyl phthalate-d-alanyl-ß-d-glucoside (MHBP-ala-glu) products were observed for the first time. The proteomic analysis demonstrated that DnBP upregulated the expression of rice proteins associated with transporter activity, antioxidant synthesis, and oxidative stress response and downregulated that of proteins involved in photosynthesis, photorespiration, chlorophyll binding, and mono-oxygenase activity. Molecular docking revealed that DnBP can affect protein molecular activity via pi-sigma, pi-alkyl, and pi-pi interactions or by forming carbon-hydrogen bonds. The metabolomic analysis showed that key metabolic pathways including citrate cycle, biosynthesis of aminoacyl-tRNA, and metabolism of amino acids, sphingolipids, carbohydrates, nucleotides, and glutathione were activated in rice plants exposed to DnBP and its primary metabolite mono-n-butyl phthalate (MnBP). Furthermore, exposure to 80 ng/mL MnBP significantly perturbed the metabolic profile and molecular function in plants, with downregulation of the levels of beta-alanine (0.56-fold), cytosine (0.48-fold), thymine (0.62-fold), uracil (0.48-fold), glucose (0.59-fold), and glucose-1-phosphate (0.33-fold), as well as upregulation of the levels of l-glutamic acid (2.97-fold), l-cystine (2.69-fold), and phytosphingosine (38.38-fold). Therefore, the degradation intermediates of DnBP pose a potentially risk to plant metabolism and raise concerns for crop safety related to plasticizer pollution.


Subject(s)
Diethylhexyl Phthalate , Environmental Pollutants , Oryza , Phthalic Acids , Humans , Dibutyl Phthalate/metabolism , Environmental Pollutants/analysis , Molecular Docking Simulation , Proteomics , Phthalic Acids/metabolism , Environmental Exposure/analysis , Metabolic Networks and Pathways , Amino Acids/metabolism
8.
Sci Total Environ ; 880: 163254, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37019237

ABSTRACT

Di-(2-ethylhexyl) phthalate (DEHP) as widely utilized plasticizer has aroused increasing concerns since its endocrine disrupting effects and continuous accumulation in biota. To date, the interaction mechanism between DEHP and rice plants has not been clearly illustrated at molecular level. Here, we investigated biological transformation and response of rice plants (Oryza sativa L.) to DEHP at realistic exposure concentrations. Nontargeted screening by UPLC-QTOF-MS was used to verify 21 transformation products derived from phase I metabolism (hydroxylation and hydrolysis) and phase II metabolism (conjugation with amino acids, glutathione, and carbohydrates) in rice. MEHHP-asp, MEHHP-tyr, MEHHP-ala, MECPP-tyr and MEOHP-tyr as the conjugation products with amino acids are observed for the first time. Transcriptomics analyses unraveled that DEHP exposure had strong negative effects on genes associated with antioxidative components synthesis, DNA binding, nucleotide excision repair, intracellular homeostasis, and anabolism. Untargeted metabolomics revealed that metabolic network reprogramming in rice roots was induced by DEHP, including nucleotide metabolism, carbohydrate metabolism, amino acid synthesis, lipid metabolism, synthesis of antioxidant component, organic acid metabolism and phenylpropanoid biosynthesis. The integrated analyses of interaction between differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) endorsed that metabolic network regulated by DEGs was significantly interfered by DEHP, resulting in cell dysfunction of roots and visible growth inhibition. Overall, these finding generated fresh perspective for crops security caused by plasticizer pollution and enhanced the public focus on dietary risk.


Subject(s)
Diethylhexyl Phthalate , Oryza , Phthalic Acids , Plasticizers/toxicity , Diethylhexyl Phthalate/toxicity , Diethylhexyl Phthalate/metabolism , Oryza/metabolism , Phthalic Acids/analysis
9.
Environ Int ; 172: 107793, 2023 02.
Article in English | MEDLINE | ID: mdl-36739853

ABSTRACT

Tricresyl phosphate (TCP) is extensively used organophosphorus flame retardants and plasticizers that posed risks to organisms and human beings. In this study, the translocation and biotransformation behavior of isomers tri-p-cresyl phosphate (TpCP), tri-m-cresyl phosphate (TmCP), and tri-o-cresyl phosphate (ToCP) in rice and rhizosphere microbiome was explored by hydroponic exposure. TpCP and TmCP were found more liable to be translocated acropetally, compared with ToCP, although they have same molecular weight and similar Kow. Rhizosphere microbiome named microbial consortium GY could reduce the uptake of TpCP, TmCP, and ToCP in rice tissues, and promote rice growth. New metabolites were successfully identified in rice and microbiome, including hydrolysis, hydroxylated, methylated, demethylated, methoxylated, and glucuronide- products. The methylation, demethylation, methoxylation, and glycosylation pathways of TCP isomers were observed for the first time in organisms. What is more important is that the demethylation of TCPs could be an important and overlooked source of triphenyl phosphate (TPHP), which broke the traditional understanding of the only manmade source of toxic TPHP in the environment. Active members of the microbial consortium GY during degradation were revealed and metagenomic analysis indicated that most of active populations contained TCP-degrading genes. It is noteworthy that the strains and function genes in microbial consortium GY that responsible for TCP isomers' transformation were different. These results can improve our understanding of the translocation and transformation of organic pollutant isomers in plants and rhizosphere microbiome.


Subject(s)
Flame Retardants , Microbiota , Oryza , Tritolyl Phosphates , Humans , Organophosphates , Flame Retardants/analysis , Phosphates
10.
Article in English | MEDLINE | ID: mdl-36767884

ABSTRACT

Traffic activities release large amounts of trace metal(loid)s in urban environments. However, the impact of vehicle operation-associated emissions on trace metal(loid) enrichment in road dust and the potential migration of these trace metal(loid)s to the surrounding environment remain unclear. We evaluated the contamination, sequential fraction, and bioaccessibility of trace metal(loid)s in urban environments by assessing their presence in road dust, garden vegetables, and tree tissues, including bark and aerial roots, at a traffic-training venue impacted by vehicle operation emissions and, finally, calculated the bioaccessibility-based health risk. The results indicated a significant accumulation of trace metal(loid)s in road dust, with the highest lead (Pb), cadmium (Cd), and antimony (Sb) concentrations in the garage entrance area due to higher vehicle volumes, frequent vehicle starts and stops, and lower speeds. Aerial roots exposed to hill start conditions exhibited the highest Pb, Zn, and Sb levels, potentially caused by high road dust resuspension, confirming that this tree tissue is an appropriate bioindicator. Sequential extraction revealed high percentages of carbonate-, Fe/Mn oxide-, and organic/sulphide-associated fractions of Pb, copper (Cu), and zinc (Zn) in road dust, while most Cd, Cr, Ni, and Sb occurred as residual fractions. According to the potential mobilizable fractions in sequential extraction, the in vitro gastrointestinal method could be more suitable than the physiologically based extraction test to evaluate the bioaccessibility-related risk of traffic-impacted road dust. The bioaccessibility-based health risk assessment of the road dust or soil confirmed no concern about noncarcinogenic risk, while the major risk originated from Pb although leaded gasoline was prohibited before the venue establishment. Furthermore, the cancer risks (CRs) analysis showed the probable occurrence of carcinogenic health effects from Cd and Ni to adults and from Cd, Cr, and Ni to children. Furthermore, the Cd and Pb concentrations in the edible leaves of cabbage and radish growing in gardens were higher than the recommended maximum value. This study focused on the health risks of road dust directly impacted by vehicle emissions and provides accurate predictions of trace metal(loid) contamination sources in the urban environment.


Subject(s)
Metals, Heavy , Soil Pollutants , Trace Elements , Child , Adult , Humans , Dust/analysis , Environmental Monitoring/methods , Metals, Heavy/analysis , Vehicle Emissions/analysis , Vegetables , Trees , Cadmium/analysis , Lead/analysis , Trace Elements/analysis , Zinc/analysis , Risk Assessment , Soil Pollutants/analysis , China
11.
Environ Pollut ; 323: 121352, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36841421

ABSTRACT

Recently, sodium percarbonate (SPC) as a solid substitute for H2O2 has aroused extensive attention in advanced oxidation processes. In current work, the degradation kinetics and mechanisms of antibiotic sulfamethoxazole (SMX) by ultraviolet (UV) driven SPC system were explored. The removal efficiency of SMX was enhanced as the increasing dosage of SPC. Moreover, hydroxyl radical (•OH), carbonate radical (CO3•-) and superoxide radical (O2•-) were verified to be presented by scavenger experiments and •OH, CO3•- exhibited a significant role in SMX degradation. Reactions mediated by these radicals were affected by anions and natural organic matters, implying that an incomplete mineralization of SMX would be ubiquitous. The screening four intermediates and transformation patterns of SMX were verified by DFT analysis. Metabolomic analysis demonstrated that a decreasing negative effect in E. coli after 24 h exposure was induced by intermediates products. In detail, SMX interfered in some key functional metabolic pathways including carbohydrate metabolism, pentose and glucuronate metabolism, nucleotide metabolism, arginine and proline metabolism, sphingolipid metabolism, which were mitigated after UV/SPC oxidation treatment, suggesting a declining environmental risk of SMX. This work provided new insights into biological impacts of SMX and its transformation products and vital guidance for SMX pollution control using UV/SPC technology.


Subject(s)
Sulfamethoxazole , Water Pollutants, Chemical , Hydrogen Peroxide , Escherichia coli , Carbonates , Oxidation-Reduction , Water Pollutants, Chemical/analysis
12.
Environ Sci Technol ; 57(4): 1776-1787, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36656265

ABSTRACT

The biotransformation behavior and toxicity of organophosphate esters (OPEs) in rice and rhizosphere microbiomes were comprehensively studied by hydroponic experiments. OPEs with lower hydrophobicity were liable to be translocated acropetally, and rhizosphere microbiome could reduce the uptake and translocation of OPEs in rice tissues. New metabolites were successfully identified in rice and rhizosphere microbiome, including hydrolysis, hydroxylated, methylated, and glutathione-, glucuronide-, and sulfate-conjugated products. Rhizobacteria and plants could cooperate to form a complex ecological interaction web for OPE elimination. Furthermore, active members of the rhizosphere microbiome during OPE degradation were revealed and the metagenomic analysis indicated that most of these active populations contained OPE-degrading genes. The results of metabolomics analyses for phytotoxicity assessment implied that several key function metabolic pathways of the rice plant were found perturbed by metabolites, such as diphenyl phosphate and monophenyl phosphate. In addition, the involved metabolism mechanisms, such as the carbohydrate metabolism, amino acid metabolism and synthesis, and nucleotide metabolism in Escherichia coli, were significantly altered after exposure to the products mixture of OPEs generated by rhizosphere microbiome. This work for the first time gives a comprehensive understanding of the entire metabolism of OPEs in plants and associated microbiome, and provides support for the ongoing risk assessment of emerging contaminants and, most critically, their transformation products.


Subject(s)
Flame Retardants , Microbiota , Oryza , Rhizosphere , Esters/metabolism , Flame Retardants/analysis , Organophosphates , Biotransformation , Phosphates , Metabolic Networks and Pathways , Environmental Monitoring , China
13.
Chemosphere ; 315: 137741, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36610515

ABSTRACT

Carbamazepine (CBZ) as an extensively distributed emerging pollutant has menaced ecological security. The degradation performance of CBZ by UV driven bisulfite process was investigated in this work. The kinetics results indicated that CBZ was high-efficiently degraded by UV/bisulfite following a pseudo first-order kinetic model (Kobs = 0.0925 min-1). SO4•- and •OH were verified as the reactive oxidants by EPR test and the radicals scavenging experiment using MeOH and TBA. SO4•- played a dominant role for CBZ degradation. The Density functional theory (DFT) and LC-qTOF-MS/MS clarified that hydroxylation, ketonation, ring opening reaction, and ring contraction were main transformation patterns of CBZ. As to influence factors, CBZ degradation was significantly hindered in presence of CO32-, HPO42- and NOM. Toxicological analysis derived from metabonomics suggested that the remarkable alteration of metabolic profile was triggered by exposure to intermediates mixture. CBZ intermediates interfered in several key metabolic pathways, including pentose phosphate, amino acids, lysine degradation, glycerophospholipid, glutathione, nucleotides and carbohydrate, which was alleviated after UV/bisulfite treatment. This work provided a meaningful support to potential risk of CBZ intermediates products, which shed light on the future application in eliminating drugs using UV /bisulfite.


Subject(s)
Water Pollutants, Chemical , Water Purification , Tandem Mass Spectrometry , Water Pollutants, Chemical/analysis , Water Purification/methods , Carbamazepine/chemistry , Benzodiazepines , Kinetics , Oxidation-Reduction , Ultraviolet Rays
14.
Sci Total Environ ; 865: 161285, 2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36587688

ABSTRACT

Soil aggregate size plays an important role in controlling the distribution and transport of metals. Metals immobilized in soil particles will pose potential risks through production/sink flow and infiltration. This study explored the distribution behavior of metals based on soil aggregate size in a restored coastal mining area by establishing Structural Equation Model (SEM) and column experiments. The results showed that hydrological factors and a high degree of weathering accelerated the dissolution of metals from the mine, the desorption of Wa-NH4+-N, the release of F-, and the leaching of NO3-. Driven by soil properties, natural factors, and anthropogenic activities, the total metal content (Totalmetal) of Cr, Ni, Zn, Mn, and As showed significant spatial heterogeneity compared to Cd, Co, Cu, and Pb. The geochemical fraction of metals (Geometal) indicated that Cd, Co, Pb, Zn, As, and Cu are mainly present in iron­manganese oxidation bound, organically bound, and residual fractions. The results of SEM showed that the physicochemical properties, Wa-NH4+-N, nitrate nitrogen, and inorganic anions of the soil could explain 69.1 %, 76.4 %, 97.1 %, and 80.0 % of the variation in Kd-Mn, Kd-Pb, Kd-Ni, and Kd-Zn, respectively. While Kd-Cd, Kd-Cu, and Kd-Cr could be predicted by the Totalmetal, but the Geometal seemed to have little influence on metal Kd. The results of column experiments showed that macroaggregates (>0.25 mm) significantly affected the distribution of Co, Cr, Cu, Mn, Ni, Pb, and Zn in the topsoil. The severe disruption of soil aggregate structure resulted in small fluctuations of anthropogenic Cu, Mn, Pb, Zn, and As in different layers of deep soil. In addition, mineral composition in >0.15 mm particle size was more likely to change. Overall, the hydrological cycle of coastal mines increases the uncertainty of their response to risk. Our study provides a basis for future strategies for priority control and risk prevention.

15.
Chemosphere ; 318: 137970, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36708784

ABSTRACT

In this work, a heterogeneous catalyst of CuxO was rationally designed by using Cu-based metal organic frameworks (marked Cu-BDC) as the template, and was used to degrade tetracycline (TC) via activation of peroxymonosulfate (PMS). The optimal CuxO-350 showed excellent catalytic efficiency for TC degradation, and the reaction rate constant (0.104 min-1) was 8 times higher than that (0.013 min-1) of raw Cu-BDC. The characterization observations confirmed that CuxO-350 possessed multiple valence states (CuO and Cu2O) and oxygen vacancies (Ov), both of which were favorable for the activation of PMS, resulting in promoting the generation of active species in the CuxO-350 + PMS system. Different from the free radical pathway in Cu-BDC + PMS system, a radical-nonradical coupling process was detected in the CuxO-350 + PMS system, which was confirmed by quenching experiments and EPR measurements. Moreover, the toxicity prediction showed that the toxicity of degradation intermediates declined compared with TC. This work not only opened up a new strategy for the rational design and preparation of high-efficient catalysts by employing metal organic frameworks precursors, but also offered an insight into the reaction mechanism of PMS activation through a radical-nonradical coupling process catalyzed by CuxO-350 derived from Cu-BDC.


Subject(s)
Metal-Organic Frameworks , Peroxides , Oxygen , Anti-Bacterial Agents/pharmacology , Tetracycline
16.
Article in English | MEDLINE | ID: mdl-36673774

ABSTRACT

A regional-scale survey was conducted to assess the occurrence, distribution, and risk of two extensively used pesticides (organophosphate pesticides and pyrethroids) in agricultural soils from the Pearl River Delta (PRD), South China. All target organophosphate pesticides (OPPs) and pyrethroids (PYs) were detected in the soil samples and both with a detection rate of 100%. The residues of the sum of six OPPs and the sum of four PYs were in the range of LOD-991 ng/g and 8.76-2810 ng/g, respectively. Dimethoate was the dominant OPPs, and fenpropathrin was the predominant PYs in the soils of the PRD region. With intensive agricultural activities, higher residues of OPPs and PYs in soils were detected closer to the seaside, among which Zhuhai city and Huizhou city suffered more serious combined pesticide pollution. The vertical compositional profiles showed that dimethoate could be detected through each soil layer in the PRD region's nine cities. The human exposure estimation of OPPs showed insignificant risks to the local population. In contrast, cypermethrin and fenpropathrin showed a potential ecological risk of 2.5% and 3.75% of the sampling sites, respectively. These results can facilitate those commonly used pesticide controls and promote sustainable soil management.


Subject(s)
Insecticides , Pesticides , Pyrethrins , Soil Pollutants , Humans , Farms , Dimethoate , Rivers , Pyrethrins/analysis , Pesticides/analysis , Soil/chemistry , Organophosphorus Compounds , China , Environmental Monitoring , Soil Pollutants/analysis
17.
Sci Total Environ ; 856(Pt 2): 159157, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36195145

ABSTRACT

Atrazine residue in the environment continues to threaten aquatic ecosystem and human health owing to its adverse effect. However, limited researches focused on degradation mechanism of atrazine by UV/bisulfite, especially risk of intermediates at cellular and molecular level has not been seriously elaborated. In current work, transformation patterns and residual toxicity of intermediates of atrazine by UV/bisulfite were systematically investigated. The atrazine degradation was described by a pseudo first-order kinetic model (Kobs = 0.1053 min-1). The presence of H2PO4-, HCO3- and HA had a powerful inhibition. Scavenging test of radicals illustrated that SO4•-, •OH and O2•- existed in UV/bisulfite system, SO4•- and •OH were mainly responsible for atrazine degradation. Eight degradation intermediates were identified, which were involved in dealkylation, alkyl oxidation, dechlorination-hydroxylation, and alkylic-hydroxylation. E. coli as a model microorganism was selected to assess the risk of degradation intermediates. The levels of reactive oxygen species, MDA and Na+/K+-ATPase were declined, suggesting that oxidative damage induced by these intermediates was weakened. According to differential metabolites expression analysis, several key metabolites including aspartate, L-tryptophan, L-asparagine, cytidine, cytosin, stearic acid, behenic acid, were up-regulated, and glutathione, cadaverin, L-2-hydroxyglutaric acid and phytosphingosine were downregulated, clarifying that effective detoxification of atrazine can be performed by UV/bisulfite.


Subject(s)
Atrazine , Water Pollutants, Chemical , Water Purification , Humans , Atrazine/toxicity , Atrazine/analysis , Ecosystem , Escherichia coli , Water Pollutants, Chemical/analysis , Oxidation-Reduction , Kinetics , Ultraviolet Rays
18.
Article in English | MEDLINE | ID: mdl-36498014

ABSTRACT

Road dust has been severely contaminated by trace metals and has become a major health risk to urban residents. However, there is a lack of information on bioaccessible trace metals in road dust, which is necessary for an accurate health risk assessment. In this study, we collected road dust samples from industrial areas, traffic intersections, and agricultural fields from a megacity (Guangzhou), China, and conducted a geochemical enrichment, speciation, and bioaccessibility-based health risk assessment of trace metals. In comparison with local soil background values, the results revealed a significant accumulation of trace metals, including Zn, Cd, Cu, and Pb in the road dust, which is considered moderate to heavy pollution. Sequential extraction indicated that most trace metals in the road dust were primarily composed of a Fe/Mn oxide-bound fraction, carbonate-bound fraction, and residual fraction, while the dominant fraction was the organic matter-bound fraction of Cu, and the residual fractions of As, Cr, and Ni. The in vitro gastrointestinal (IVG) method revealed that high percentages of Zn, Cd, Cu, and As were bioaccessible, suggesting the possible dissolution of trace metals from adsorbed and carbonate-associated fractions in road dust exposed to the biological fluid matrix. The IVG bioaccessibility-based concentration largely decreased the noncarcinogenic health risk to a negligible level. Nevertheless, the entire population is still exposed to the cumulative probability of a carcinogenic risk, which is primarily contributed to by As, Cd, Cr, and Pb. Future identification of the exact sources of these toxic metals would be helpful for the appropriate management of urban road dust contamination.


Subject(s)
Metals, Heavy , Trace Elements , Humans , Dust/analysis , Metals, Heavy/analysis , Environmental Monitoring , Cadmium , Environmental Pollution/analysis , Risk Assessment , China , Cities
19.
Article in English | MEDLINE | ID: mdl-36498306

ABSTRACT

In order to investigate the pollution status of polycyclic aromatic hydrocarbons (PAHs) in the agricultural soil, 240 agricultural soil topsoil samples were collected from nine Pearl River Delta cities from June to September 2019. In addition, 72 samples were collected for vertical soil profiles, which soil profiles were excavated to a depth of 80 cm. After sample preparation, GC-MS was used for the separation of compounds on a HP-5MS quartz capillary column. ArcGIS software was used to map the spatial distribution. Health risk assessment was conducted using USEPA standard. The results showed that the total concentration of 16 PAHs ranged from 43.4 to 5630 ng/g, with an average of 219 ng/g. The spatial distribution showed that most of the seriously polluted areas were in the coastal area, near the port, and there was point source pollution in the Gaoming of Foshan. Vertically distributed display Zhuhai, Jiangmen, Zhaoqing, Shenzhen and Dongguan increased and then decreased from bottom to bottom, showing a low-high-low pattern, the concentration of PAHs in Zhongshan and Foshan decreased with the soil depth, while the concentration of PAHs in Guangzhou and Huizhou was enriched with human activities. The PAHs components in soil samples were mainly medium and high rings (4−6 rings). The analysis of the origin of PAH in soil samples showed that the mixture of incomplete combustion sources of fossil fuels such as coal and biomass and traffic emission sources were the main sources of soil PAHs. A small amount can be attributed to oil sources such as oil spills. The human health risk assessment showed no cancer risk for children, while for adults, may cause a potential risk of cancer, which needs to be noticed. Spearman correlation analysis showed that PAH content was significantly correlated with SOC (p < 0.01) and pH (p < 0.05). Port transport, road emissions and industrial production make the area a pollution hot topic, and supervision should be strengthened to protect the environment and food safety.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Adult , Child , Humans , Polycyclic Aromatic Hydrocarbons/analysis , Soil/chemistry , Soil Pollutants/analysis , Environmental Monitoring/methods , Agriculture , Risk Assessment , China
20.
Article in English | MEDLINE | ID: mdl-36293752

ABSTRACT

To reveal the pollution status of agricultural soils along with rapid urbanization and economic growth, a large regional survey of organochlorine pesticides (OCPs) in agricultural soils was conducted in the Pearl River Delta (PRD) of China. The results showed that the total residues of 23 OCPs were in the range of ND-946 ng/g dry weight. OCP residues showed distinct spatial distribution characteristics within the PRD. OCPs were mainly found in areas with high agricultural production and industrial activities. Higher OCP concentrations were observed in the top layer of soil, while the concentration decreases to marginal levels when the soil depth is greater than 50 cm. OCPs are mainly derived from historical use. Hexachlorocyclohexanes (HCHs) in the top soil of the study area are mainly from the use of lindane. Soil pH was negatively and significantly correlated with total OCP concentration. The human health risk assessment showed no health risk for children, while for adults, there is a non-carcinogenic risk, which needs to be noticed. Agricultural activities and industrial production have made the region a pollution hotspot and should arouse more stringent regulation to protect the environment and food safety.


Subject(s)
Hydrocarbons, Chlorinated , Pesticides , Soil Pollutants , Child , Humans , Soil/chemistry , Rivers/chemistry , Hexachlorocyclohexane/analysis , Soil Pollutants/analysis , Environmental Monitoring/methods , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis , Risk Assessment , China
SELECTION OF CITATIONS
SEARCH DETAIL
...