Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Orthopedics ; : 1-7, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38690847

ABSTRACT

BACKGROUND: The objectives of this research were to establish an animal model of adjacent segment degeneration (ASD) bordering lumbar fusion and to investigate the expression of autophagy factors in nucleus pulposus cells of adjacent intervertebral disks. MATERIALS AND METHODS: Twenty-four adult New Zealand white rabbits were enrolled and divided into two groups: group A (n=12) and group B (n=12). Posterolateral fusion and fixation were performed after intervertebral disk degeneration occurred in group A, and the rabbits were monitored for 6 months. Group B was the control group and did not undergo fusion surgery. These rabbits were monitored for 6 months. Real-time quantitative polymerase chain reaction and immunohistochemistry were performed to detect the mRNA and protein expressions of PTEN-induced kinase 1 (PINK1), Parkin, ADAMTS-4, and MMP-3. An external database, the GEO database, was used to examine the expression of these genes and analyze them for differential expression. RESULTS: After lumbar fusion in rabbits, the animal model of ASD exhibited gradual degeneration of adjacent intervertebral disks over time. Group A displayed significantly higher mRNA and protein expressions of PINK1 and MMP-3 but lower expression of ADAMTS-4 compared with group B (P<.05). The results analyzed in the GEO database showed that the expression of PINK1 was higher in group A than in group B, while the expression of ADAMTS-4 was lower in group A than in group B. CONCLUSION: After posterolateral lumbar fusion in rabbits, the animal ASD model showed gradual deterioration of adjacent intervertebral disks with prolonged follow-up. The findings indicate the important role of autophagy in the apoptosis of nucleus pulposus cells in adjacent intervertebral disks. [Orthopedics. 202x;4x(x):xx-xx.].

2.
Nanomaterials (Basel) ; 14(7)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38607155

ABSTRACT

In this paper, a novel method was proposed for the synthesis of Cu2S on copper mesh via electrolysis in SRB culture medium. It was found that following electrolysis in SRB medium, squamous-like Cu2S arrays were obtained on the copper mesh, and the Cu2S loading contents varied with the electrolyzing parameters. The resultant Cu2S on copper mesh in SRB (CSCM-SRB) with the highest catalytic MB degradation properties was produced by electrolysis at 3.75 mA/cm2 for 900 s. The optimized MB-degrading conditions were determined to be 1.2 cm2/mL CSCM-SRB with 0.05 M H2O2 at 35 °C when pH = 6, under which the degradation of MB reached over 99% after 120 min of reaction. Disinfecting properties was also proven by antibacterial tests, revealing that an almost 100% antibacterial rate against E. coli was obtained after 8 min. The organic compounds produced by SRB adsorbed on CSCM-SRB strongly promoted the degradation of MB. Furthermore, possible Fenton-like mechanisms of CSCM-SRB were proposed, illustrating that ·O2-, ·OH, and 1O2 acted as the main functional species during Fenton-like reactions, leading to effective MB degradation and high antibacterial properties. Finally, a simple device for wastewater treatment was designed, providing possible applications in real environments.

3.
Ultrason Sonochem ; 102: 106749, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38217907

ABSTRACT

Photocatalytic MoS2 with visible light response is considered as a promising bactericidal material owing to its non-toxicity and high antibacterial efficiency. However, photocatalysts always exist as powder, so it is difficult to settle photocatalysts on the metal surface, which limits their application in aqueous environments. To solve this problem, ultrasound and sodium dodecyl sulfate (SDS) were introduced into the co-deposition process of MoS2 and zinc matrix, so that novel MoS2-Zn coatings were obtained. In this process, ultrasound and SDS strongly promoted the dispersion and adsorption of MoS2 on the co-depositing surfaces. Then MoS2 were proved to be composited into the Zn matrix with effective structures, and the addition of SDS effectively increased the loading content of MoS2 in the MoS2-Zn coatings. Besides, the antibacterial performance of the MoS2-Zn coatings was evaluated with three typical fouling bacteria E.coli, S.aureus and B.wiedmannii. The MoS2-Zn coating showed high and broad-spectrum antibacterial properties with over 98 % inhibition rate against these three bacteria. Furthermore, it is proved that the MoS2-Zn coatings generated superoxide (·O2-) and hydroxyl radicals (·OH) under visible light, which played the dominant and subordinate roles in the antibacterial process, respectively. The MoS2-Zn coatings also showed high antibacterial stability after four "light-dark" cycles. According to the results of the attached bacteria, the MoS2-Zn coatings were considered to effectively repel the living pelagic bacteria instead of killing the attached ones, which was highly environmentally friendly. The obtained MoS2-Zn coatings were considered promising in biofilm inhibiting and marine antifouling fields.


Subject(s)
Electroplating , Molybdenum , Sodium Dodecyl Sulfate/chemistry , Molybdenum/pharmacology , Molybdenum/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Zinc/chemistry , Escherichia coli
4.
Chem Commun (Camb) ; 60(8): 972-975, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38165772

ABSTRACT

Herein, a N-doped carbon-supported Co and NiFe LDH (Co-NC@NiFe LDH) array was developed, which demonstrated superior catalytic activities for both the OER and UOR in an alkaline medium. The intrinsic electron transfer is effectively regulated by the construction of a built-in electric field, which reduces the reaction energy barrier and consequently leads to a significant enhancement in electrocatalytic activity.

5.
Clin Transl Radiat Oncol ; 45: 100714, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38130885

ABSTRACT

This study evaluated the feasibilities and outcomes following four-dimensional magnetic resonance imaging (4D-MRI) assisted stereotactic body radiation therapy (SBRT) for unresectable colorectal liver metastases (CRLMs). From March 2018 to January 2022, we identified 76 unresectable CRLMs patients with 123 lesions who received 4D-MRI guided SBRT in our institution. 4D-MRI simulation with or without abdominal compression was conducted for all patients. The prescription dose was 50-65 Gy in 5-12 fractions. The image quality of computed tomography (CT) and MRI were compared using the Clarity Score. Clinical outcomes and toxicity profiles were evaluated. 4D-MRI improved the image quality compared with CT images (mean Clarity Score: 1.67 vs 2.88, P < 0.001). The abdominal compression reduced motions in cranial-caudal direction (P = 0.03) with two phase T2 weighted images assessing tumor motion. The median follow-up time was 12.5 months. For 98 lesions assessed for best response, the complete response, partial response and stable disease rate were 57.1 %, 30.6 % and 12.2 %, respectively. The local control (LC) rate at 1 year was 97.3 %. 46.1 % of patients experienced grade 1-2 toxicities and only 2.6 % patients experienced grade 3 hematologic toxicities. The 4D-MRI technique allowed accurate target delineation and motion tracking in unresectable CRLMs patients. Favorable LC rate and mild toxicities were achieved. This study provided evidence for using 4D-MRI assisted SBRT as an alternative treatment in unresectable CRLMs.

6.
Appl Opt ; 62(23): 6169-6170, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37707085

ABSTRACT

This erratum reports corrections for the original publication, Appl. Opt.61, 2834 (2022)APOPAI0003-693510.1364/AO.450805.

7.
J Org Chem ; 88(15): 10632-10646, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37449736

ABSTRACT

Simple, commercially available iodine was successfully employed as a highly efficient and chemoselective catalyst for the oxidative annulation of ß,γ-unsaturated hydrazones to produce 1,6-dihydropyridazines under mild conditions for the first time. Interestingly, when active ß,γ-unsaturated hydrazone compounds containing electron-donating groups, such as furyl, thienyl, and cycloalkyl, were used, pyrroles were obtained. A gram-scale preparation experiment and further derivatization of pyridazines demonstrated the potential applicability of our synthesis method. Experimental studies and density functional theory calculations unveiled the origin of the chemoselectivity determining the formation of different products.

8.
Chem Commun (Camb) ; 59(31): 4620-4623, 2023 Apr 13.
Article in English | MEDLINE | ID: mdl-36987771

ABSTRACT

A V-doped amorphous/crystalline heterostructure of NiFe (oxy)hydroxide with nanoflower morphology is developed, which exhibits excellent OER and UOR catalytic activities. V doping changes the local charge density, lowers the reaction barrier, and optimizes the electron arrangement of the NiFe LDH catalyst.

9.
J Environ Manage ; 336: 117632, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36921474

ABSTRACT

Although the fates of microplastics (0.1-5 mm) in marine environments and freshwater are increasingly studied, little is known about their vector effect in wastewater treatment plants (WWTPs). Previous studies have evaluated the accumulation of antibiotic resistance genes (ARGs) on microplastics, but there is no direct evidence for the selection and horizontal transfer of ARGs on different microplastics in WWTPs. Here, we show biofilm formation as well as bacterial community and ARGs in these biofilms grown on four kinds of microplastics via incubation in the aerobic and anaerobic tanks of a WWTP. Microplastics showed differential capacities for bacteria and ARGs enrichment, differing from those of the culture environment. Furthermore, ARGs in microplastic biofilms were horizontally transferred at frequencies higher than those in water samples in both tanks. Therefore, microplastics in WWTPs can act as substrates for horizontal transfer of ARGs, potentially causing a great harm to the ecological environment and adversely affecting human health.


Subject(s)
Anti-Bacterial Agents , Microplastics , Humans , Anti-Bacterial Agents/pharmacology , Plastics , Genes, Bacterial , Wastewater , Drug Resistance, Microbial/genetics , Bacteria/genetics
10.
J Colloid Interface Sci ; 630(Pt A): 34-45, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36215822

ABSTRACT

It is widely recognized that designing a special micro/nanostructure of microwave absorption materials for enhancing interface polarization benefits dielectric loss capability. In this work, a facile charge-driven self-assembly strategy is reported to prepare wrinkled reduced graphene oxide wrapped polymer-derived carbon (CS@rGO) microspheres. Noticeably, the unique three-dimensional (3D) multi-interface structure imparts CS@rGO microspheres with promoted microwave absorption capability. Adjusting the charge-driven self-assembly cycle times, the dielectric properties and impedance matching characteristics of the CS@rGO microspheres can be optimized. The minimum reflection loss (RLmin) of the sample can reach up to -55.24 dB at 13.75 GHz and the effective absorption bandwidth (RL ≤ -10 dB) is 4.30 GHz (11.55-15.85 GHz) at only a thickness of 1.85 mm. This research provides a pathway to explore the high-performance microwave absorber through the construction of the unique 3D multi-interface structure.


Subject(s)
Carbon , Microwaves , Microspheres , Polymers
11.
Chem Commun (Camb) ; 58(71): 9874-9877, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35920312

ABSTRACT

Fe, Mo-doped Ni3S2 nanosheets that are derived from NiFe-LDH by structural transformation have been successfully developed. The obtained Fe, Mo-Ni3S2 exhibits a low overpotential of 67 mV to enable a current density of 10 mA cm-2 for the HER and the overpotential for the OER is only 240 mV. Besides, the current density of 10 mA cm-2 can be achieved with a voltage of 1.53 V in a two-electrode hydrolysis device.

12.
Eur J Med Res ; 27(1): 106, 2022 Jul 02.
Article in English | MEDLINE | ID: mdl-35780134

ABSTRACT

BACKGROUND: Chronic inflammatory disorders in atrial fibrillation (AF) contribute to the onset of ischemic stroke. Systemic immune inflammation index (SIII) and system inflammation response index (SIRI) are the two novel and convenient measurements that are positively associated with body inflammation. However, little is known regarding the association between SIII/SIRI with the presence of AF among the patients with ischemic stroke. METHODS: A total of 526 ischemic stroke patients (173 with AF and 353 without AF) were consecutively enrolled in our study from January 2017 to June 2019. SIII and SIRI were measured in both groups. Logistic regression analysis was used to analyse the potential association between SIII/SIRI and the presence of AF. Finally, the correlation between hospitalization expenses, changes in the National Institutes of Health Stroke Scale (NIHSS) scores and SIII/SIRI values were measured. RESULTS: In patients with ischemic stroke, SIII and SIRI values were significantly higher in AF patients than in non-AF patients (all p < 0.001). Moreover, with increasing quartiles of SIII and SIRI in all patients, the proportion of patients with AF was higher than that of non-AF patients gradually. Logistic regression analyses demonstrated that log-transformed SIII and log-transformed SIRI were independently associated with the presence of AF in patients with ischemic stroke (log-transformed SIII: odds ratio [OR]: 1.047, 95% confidence interval CI = 0.322-1.105, p = 0.047; log-transformed SIRI: OR: 6.197, 95% CI = 2.196-17.484, p = 0.001). Finally, a positive correlation between hospitalization expenses, changes in the NIHSS scores and SIII/SIRI were found, which were more significant in patients with AF (all p < 0.05). CONCLUSIONS: Our study suggests SIII and SIRI are convenient and effective measurements for predicting the presence of AF in patients with ischemic stroke. Moreover, they were correlated with increased financial burden and poor short-term prognosis in AF patients presenting with ischemic stroke.


Subject(s)
Atrial Fibrillation , Ischemic Stroke , Stroke , Atrial Fibrillation/complications , Biomarkers , Humans , Inflammation/complications , Ischemic Stroke/complications , Stroke/complications
13.
Appl Opt ; 61(10): 2834-2841, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35471359

ABSTRACT

Owing to the general disadvantages of traditional neural networks in gas concentration inversion, such as slow training speed, sensitive learning rate selection, unstable solutions, weak generalization ability, and an ability to easily fall into local minimum points, the extreme learning machine (ELM) was applied to sulfur hexafluoride (SF6) concentration inversion research. To solve the problems of high dimensionality, collinearity, and noise of the spectral data input to the ELM network, a genetic algorithm was used to obtain fewer but critical spectral data. This was used as an input variable to achieve a genetic algorithm joint extreme learning machine (GA-ELM) whose performance was compared with the genetic algorithm joint backpropagation (GA-BP) neural network algorithm to verify its effectiveness. The experiment used 60 groups of SF6 gas samples with different concentrations, made via a self-developed Fourier transform infrared spectroscopy instrument. The SF6 gas samples were placed in an open optical path to obtain infrared interference signals, and then spectral restoration was performed. Fifty groups were randomly selected as training samples, and 10 groups were used as test samples. The BP neural network and ELM algorithms were used to invert the SF6 gas concentration of the mixed absorbance spectrum, and the results of the two algorithms were compared. The sample mean square error decreased from 248.6917 to 63.0359; the coefficient of determination increased from 0.9941 to 0.9984; and the single running time decreased from 0.0773 to 0.0042 s. Comparing the optimized GA-ELM algorithm with traditional algorithms such as ELM and partial least squares, the GA-ELM algorithm had higher prediction accuracy and operating efficiency and better stability and generalization performance in the quantitative analysis of small samples of gas under complex noise backgrounds.


Subject(s)
Neural Networks, Computer , Sulfur Hexafluoride , Algorithms , Least-Squares Analysis , Spectrophotometry, Infrared
14.
ACS Appl Mater Interfaces ; 13(47): 56035-56044, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34791871

ABSTRACT

Designing and synthesizing stable electrocatalysts with outstanding performance for water splitting is an arduous and urgent task. Herein, Ru-anchored CoP embedded in N-doped porous carbon nanocubes (Ru-CoP/NCs) is successfully prepared. The Ru-CoP/NC reveals superior hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) properties and stability under alkaline conditions, and the corresponding overpotentials are 22 and 330 mV at 10 mA·cm-2, respectively. The unique N-doped porous carbon nanocube could boost the conductivity, and the electronic structure of CoP can be adjusted by the anchoring of Ru. Therefore, the strong interaction between Ru atoms and CoP improves the hydrogen adsorption on the catalyst, hence boosting the HER/OER performance of the Ru-CoP/NC catalyst. This work provides a facile method to exploit high-performance catalysts for water splitting.

15.
Angew Chem Int Ed Engl ; 60(35): 19435-19441, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34153176

ABSTRACT

Defect and interface engineering are recognized as effective strategies to regulate electronic structure and improve activity of metal sulfide. However, the practical application of sulfide is restricted by their low conductivity and rapid decline in activity derived from large volume fluctuation during electrocatalysis process. More importantly, the determination of exact active site of sulfide is complicated due to the inevitable electrochemical reconstruction. Herein, ZnS nanoparticles with Zn defect are anchored onto the surface of NiCo2 S4 nanosheet to construct NiCo2 S4 /ZnS hybrids, which exhibit outstanding oxygen evolution performance with an ultralow overpotential of 140 mV. The anchoring of defective ZnS nanoparticles inhibit the volume expansion of NiCo2 S4 nanosheet during the cycling process. Density-functional theory reveals that the build-in interfacial potential and Zn defect can facilitate the thermodynamic formation of *O to *OOH, thus improve their intrinsic activity.

16.
Chem Commun (Camb) ; 57(58): 7140-7143, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34180464

ABSTRACT

A facile method involving the nitrogen modification of PtCu aerogel surfaces with N-methyl pyrrolidone as the sole nitrogen source is reported. The half wave potential (E1/2) of the PtCu aerogels was 0.932 V and the electrochemical active surface area (ECSA) was 102.04 m2 g-1 for the oxygen reduction reaction (ORR), and the mass activity (MA) for the methanol electrooxidation reaction (MOR) was measured to be 4.08 A mg-1, values better than those of a commercial Pt/C catalyst and other reported Pt-based catalysts.

17.
Exp Ther Med ; 22(1): 716, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34007325

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by an excessive accumulation of triacylglycerol in the liver. Autophagy is a lysosome-dependent degradation product recovery process, which widely occurs in eukaryotic cells, responsible for the vital maintenance of cellular energy balance. Previously published studies have demonstrated that autophagy is closely related to NAFLD occurrence and maternal obesity increases the susceptibility of offspring to non-alcoholic fatty liver disease, however, the underlying mechanism of this remains unclear. In the present study, NAFLD mouse models (offspring of an obese mother mouse via high-fat feeding) were generated, and the physiological indices of the liver were observed using total cholesterol, triglyceride, high-density lipoprotein and low-density lipoprotein serum assay kits. The morphological changes of the liver were also observed via HE, Masson and oil red O staining. Reverse transcription-quantitative-PCR and western blotting were performed to detect changes of autophagy-related genes in liver or fibrosis marker proteins (α-smooth muscle actin or TGF-ß1). Changes in serum inflammatory cytokine IL-6 levels were determined via ELISA. The results of the present study demonstrated that the offspring of an obese mother were more likely to develop NALFD than the offspring of a chow-fed mother, due to their increased association with liver fibrosis. When feeding continued to 17 weeks, the worst cases of NAFLD were observed and the level of autophagy decreased significantly compared with the offspring of a normal weight mouse. In addition, after 17 weeks of feeding, compared with the offspring of a chow-fed mother, the offspring of an obese mouse mother had reduced adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) phosphorylation levels and increased mammalian target of rapamycin (mTOR) phosphorylation levels. These results suggested that a reduced level of AMPK/mTOR mediated autophagy may be of vital importance for the increased susceptibility of offspring to NAFLD caused by maternal obesity. In conclusion, the current study provided a new direction for the treatment of NAFLD in offspring caused by maternal obesity.

18.
Front Microbiol ; 12: 797189, 2021.
Article in English | MEDLINE | ID: mdl-35087498

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS), an emerging life-threatening infectious disease caused by SFTS bunyavirus (SFTSV; genus Bandavirus, family Phenuiviridae, order Bunyavirales), has been a significant medical problem. Currently, there are no licensed vaccines or specific therapeutic agents available and the viral pathogenesis remains largely unclear. Developing appropriate animal models capable of recapitulating SFTSV infection in humans is crucial for both the study of the viral pathogenic processes and the development of treatment and prevention strategies. Here, we review the current progress in animal models for SFTSV infection by summarizing susceptibility of various potential animal models to SFTSV challenge and the clinical manifestations and histopathological changes in these models. Together with exemplification of studies on SFTSV molecular mechanisms, vaccine candidates, and antiviral drugs, in which animal infection models are utilized, the strengths and limitations of the existing SFTSV animal models and some important directions for future research are also discussed. Further exploration and optimization of SFTSV animal models and the corresponding experimental methods will be undoubtedly valuable for elucidating the viral infection and pathogenesis and evaluating vaccines and antiviral therapies.

20.
Plant J ; 104(4): 1054-1072, 2020 11.
Article in English | MEDLINE | ID: mdl-32881160

ABSTRACT

Plant bacterial pathogens usually cause diseases by secreting and translocating numerous virulence effectors into host cells and suppressing various host immunity pathways. It has been demonstrated that the extensive ubiquitin systems of host cells are frequently interfered with or hijacked by numerous pathogenic bacteria, through various strategies. Some type-III secretion system (T3SS) effectors of plant pathogens have been demonstrated to impersonate the F-box protein (FBP) component of the SKP1/CUL1/F-box (SCF) E3 ubiquitin system for their own benefit. Although numerous putative eukaryotic-like F-box effectors have been screened for different bacterial pathogens by bioinformatics analyses, the targets of most F-box effectors in host immune systems remain unknown. Here, we show that XopI, a putative F-box effector of African Xoo (Xanthomonas oryzae pv. oryzae) strain BAI3, strongly inhibits the host's OsNPR1-dependent resistance to Xoo. The xopI knockout mutant displays lower virulence in Oryza sativa (rice) than BAI3. Mechanistically, we identify a thioredoxin protein, OsTrxh2, as an XopI-interacting protein in rice. Although OsTrxh2 positively regulates rice immunity by catalyzing the dissociation of OsNPR1 into monomers in rice, the XopI effector serves as an F-box adapter to form an OSK1-XopI-OsTrxh2 interaction complex, and further disrupts OsNPR1-mediated resistance through proteasomal degradation of OsTrxh2. Our results indicate that XopI targets OsTrxh2 and further represses OsNPR1-dependent signaling, thereby subverting systemic acquired resistance (SAR) immunity in rice.


Subject(s)
F-Box Proteins/metabolism , Host-Pathogen Interactions , Oryza/microbiology , Plant Diseases/microbiology , Plant Immunity , Signal Transduction , Xanthomonas/pathogenicity , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , F-Box Proteins/genetics , Gene Knockout Techniques , Oryza/genetics , Oryza/immunology , Plant Diseases/immunology , Plant Proteins/genetics , Plant Proteins/metabolism , Proteasome Endopeptidase Complex , Protein Domains , Proteolysis , Type III Secretion Systems , Virulence , Xanthomonas/genetics , Xanthomonas/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...