Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 131
Filter
1.
Mol Neurobiol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748065

ABSTRACT

Amyotrophic lateral sclerosis (ALS) represents a rare and potentially fatal neurodegenerative disease. Diverse T-cell subsets could potentially exert diametrically opposite impacts upon ALS development. A two-sample Mendelian randomization (MR) analysis was performed to investigate the correlation between 244 T-cell subsets and ALS risk. Genetic instrumental variables were procured from a standard genome-wide association study (GWAS) that encompassed 244 T-cell subsets in 3757 individuals of European lineage. ALS-related data were collected from a GWAS comprising 20,806 ALS instances and 59,804 European control participants. Multiple sensitivity analyses were performed to verify the robustness of the significant results. Reverse MR analysis was used for delineating the effects of ALS on the characteristics of T-cells. After multiple comparison corrections, 24 out of the 244 subtypes demonstrated a potential association with ALS risk. Significantly, 75% of these associations encompassed the expression of the CD3 on diverse T-cell subtypes, revealing a highly consistent inverse relation to ALS risk. The proportion of T regulatory cells (Tregs) in CD4+ T cells and secreting Tregs in CD4+ T cells demonstrated negative associations with the risk of ALS. CCR7 expression on naive CD4+ T cells and CCR7 expression on naive CD8+ T cells showed positive associations with ALS risk. Certain T-cell subsets, particularly those identified by CD3 expression on terminally differentiated CD8+ T cells, proportions of Tregs, and CCR7 expression, indicated an association with ALS risk. These findings harmonize with and extend previous observational studies investigating the involvement of T lymphocyte subset-induced immunological processes in ALS.

2.
Front Oncol ; 14: 1365255, 2024.
Article in English | MEDLINE | ID: mdl-38725635

ABSTRACT

Objective: The optimal first-line immunotherapy regimen for patients with PD-L1 expression ≥50% in squamous non-small cell lung cancer (Sq-NSCLC) remains uncertain. This study utilized net-work meta-analysis (NMA) to indirectly compare the efficacy of various first-line immuno-therapy regimens in this patient subset. Methods: Systematic searches were conducted across PubMed, the Cochrane Library, Web of Science, and Embase databases for randomized controlled trials reporting overall survival (OS) and progression-free survival (PFS) outcomes. The search spanned from database inception to November 3, 2023. Bayesian network meta-analysis was employed for a comprehen-sive analysis. To ensure scientific rigor and transparency, this study is registered in the Interna-tional Prospective Register of Systematic Reviews (PROSPERO) under the registration number CRD42022349712. Results: The NMA encompassed 9 randomized controlled trials (RCTs), involving 2170 patients and investigating 9 distinct immunotherapy regimens. For OS, the combination of camrelizumab and chemotherapy demonstrated the highest probability (36.68%) of efficacy, fol-lowed by cemiplimab (33.86%) and atezolizumab plus chemotherapy (23.87%). Regarding PFS, the camrelizumab and chemotherapy combination had the highest probability (39.70%) of efficacy, followed by pembrolizumab (22.88%) and pembrolizumab plus chemotherapy (17.69%). Compared to chemotherapy, first-line treatment with immune checkpoint inhibitors (ICIs) in Sq-NSCLC pa-tients exhibited significant improvements in OS (HR 0.59, 95% CI 0.47-0.75) and PFS (HR 0.44, 95% CI 0.37-0.52). Conclusion: This study suggests that, for Sq-NSCLC patients with PD-L1 expression ≥50%, the first-line immunotherapy regimen of camrelizumab plus chemotherapy provides superior OS and PFS outcomes. Furthermore, ICIs demonstrate enhanced efficacy compared to chemotherapy in this patient population. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier: CRD 42022349712.

3.
Anal Chem ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38709576

ABSTRACT

Cytoarchitectural staining is of great importance in disease diagnosis and cell biology research. This study developed user-friendly multifunctional red-emissive carbon dots (R-CDs) for rapid cell nucleus staining via targeting nuclear proteins. R-CDs, simply prepared by electrochemical treatment of 1,2,4-benzenetriamine, exhibit strong emission at 635 nm when excited at 507 nm. The R-CDs can rapidly stain the nucleus of human SH-SY5Y, HepG2, and HUH-7 cells with a high signal-to-noise ratio owing to fluorescence enhancement after entering the nucleus. Compared to conventional cytosolic dyes such as Hoechst and DAPI, R-CDs are cheaper, more highly dispersed in water, and more stable (requiring no stringent storage conditions). The R-CDs show stable optical properties with insignificant photobleaching over 7 days and salt resistance up to 2 M of NaCl. More importantly, R-CDs, possessing a positive charge, allow rapid staining of live cells (3 min) and dead cells (10 s) in saline. According to kinetic variation, R-CDs can distinguish live cells from dead cells. Staining exhibits high efficiency in onion epidermal cells, Aspergillus niger, Caenorhabditis elegans, and human spermatozoa. The mechanism for efficient staining is based on their fast accumulation in the nucleus due to their small size and positive charge and strong interaction with nuclear proteins at amino acid residues of histidine and arginine, resulting in fluorescence enhancement by dozens of times. The developed R-CDs do not bind to DNA and would not cause genetic damage and will find various safe applications in biological and medical fields.

4.
Front Aging Neurosci ; 16: 1362948, 2024.
Article in English | MEDLINE | ID: mdl-38756536

ABSTRACT

Background: Parkinson's disease (PD) is a progressive neurodegenerative condition. Chinese medicine therapies have demonstrated effectiveness for PD in controlled settings. However, the utilization of Chinese medicine therapies for PD in real-world clinical practice and the characteristics of patients seeking these therapies have not been thoroughly summarized. Method: The study retrospectively analyzed initial patient encounters (PEs) with a first-listed diagnosis of PD, based on electronic medical records from Guangdong Provincial Hospital of Chinese Medicine between July 2018 and July 2023. Results: A total of 3,206 PEs, each corresponding to an individual patient, were eligible for analyses. Approximately 60% of patients made initial visits to the Chinese medicine hospital after receiving a PD diagnosis, around 4.59 years after the onset of motor symptoms. Over 75% of the patients visited the Internal Medicine Outpatient Clinic at their initial visits, while a mere 13.85% visited PD Chronic Care Clinic. Rest tremor (61.98%) and bradykinesia (52.34%) are the most commonly reported motor symptoms, followed by rigidity (40.70%). The most commonly recorded non-motor symptoms included constipation (31.88%) and sleep disturbance (25.27%). Integration of Chinese medicine and conventional medicine therapies was the most common treatment method (39.15%), followed by single use of Chinese herbal medicine (27.14%). The most frequently prescribed herbs for PD included Glycyrrhiza uralensis Fisch. (gan cao), Astragalus mongholicus Bunge (huang qi), Atractylodes macrocephala Koidz. (bai zhu), Angelica sinensis (Oliv.) Diels (dang gui), Rehmannia glutinosa (Gaertn.) DC. (di huang), Paeonia lactiflora Pall. (bai shao), Bupleurum chinense DC. (chai hu), Citrus aurantium L. (zhi qiao/zhi shi/chen pi), Panax ginseng C. A. Mey. (ren shen), and Poria cocos (Schw.) Wolf (fu ling). These herbs contribute to formulation of Bu zhong yi qi tang (BZYQT). Conclusion: Patients typically initiated Chinese medical care after the establishment of PD diagnosis, ~4.59 years post-onset of motor symptoms. The prevalent utilization of CHM decoctions and patented Chinese herbal medicine products, underscores its potential in addressing both motor and non-motor symptoms. Despite available evidence, rigorous clinical trials are needed to validate and optimize the integration of CHM, particularly BZYQT, into therapeutic strategies for PD.

5.
Angew Chem Int Ed Engl ; : e202320223, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38588224

ABSTRACT

Structurally ordered soft materials that respond to complementary stimuli are susceptible to control over their spatial and temporal morphostructural configurations by intersectional or combined effects such as gating, feedback, shape-memory, or programming. In the absence of general and robust design and prediction strategies for their mechanical properties, at present, combined chemical and crystal engineering approaches could provide useful guidelines to identify effectors that determine both the magnitude and time of their response. Here, we capitalize on the purported ability of soft intermolecular interactions to instigate mechanical compliance by using halogenation to elicit both mechanical and photochemical activity of organic crystals. Starting from (E)-1,4-diphenylbut-2-ene-1,4-dione, whose crystals are brittle and photoinert, we use double and quadruple halogenation to introduce halogen-bonded planes that become interfaces for molecular gliding, rendering the material mechanically and photochemically plastic. Fluorination diversifies the mechanical effects further, and crystals of the tetrafluoro derivative are not only elastic but also motile, displaying the rare photosalient effect.

6.
iScience ; 27(3): 109168, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38439965

ABSTRACT

Distant metastasis is the main cause of death in patients with colorectal cancer (CRC). A better understanding of the mechanisms of metastasis can greatly improve the outcome of patients with CRC. Accumulating evidence suggests that circRNA plays pivotal roles in cancer progression and metastasis, especially acting as a miRNA sponge to regulate the expression of the target gene. A public database bioinformatics analysis found that miR-1825 was highly expressed in CRC tissues. In this study, miR-1825 was highly expressed in CRC tissues, which was positively correlated with lymph node metastasis and distant metastasis. In vitro and in vivo experiments confirmed that miR-1825 was positively correlated with the proliferation and migration of CRC cells. This event can be inhibited by circTBC1D22A. CircTBC1D22A can directly interact with miR-1825 and subsequently act as a miRNA sponge to regulate the expression of the target gene ATG14, which collectively advances the autophagy-mediated progression and metastasis of CRC.

7.
Physiol Plant ; 176(2): e14232, 2024.
Article in English | MEDLINE | ID: mdl-38450746

ABSTRACT

Grafting onto pumpkin rootstock is widely applied in cucumber production to improve growth and yield, as well as to overcome soil-borne diseases and enhance resistance to abiotic stresses. In this study, we constructed the cucumber-pumpkin heterografts with the one-cotyledon grafting method, and examined the effects of heterografting on biomass allocation and sugar partitioning, with cucumber and pumpkin self-grafts used as control. Compared with cucumber self-grafts, heterografting onto pumpkin rootstock promoted photosynthesis in cucumber scion, and led to higher sucrose contents in the 1st true leaf (source) and newly emerged leaf (sink). Thereby, the scion part of heterografts accumulated more biomass than cucumber self-grafts. In contrast, when compared to pumpkin self-grafts, grafting with cucumber scion reduced root vigor and biomass but promoted cotyledon growth in pumpkin rootstock. The roots (sink) of heterografts contained less sucrose and hexoses, and showed reduced sucrose synthase (SuSy) and hexokinase (HXK) activities. However, the rootstock cotyledon (source) contained more sucrose and starch, and showed higher activities of HXK, cell-wall invertase (CWIN), and enzymes for starch synthesis and degradation. Furthermore, removal or shade of rootstock cotyledon led to reduced growth of root and scion. Silencing of CmoMEX1a gene in rootstock cotyledon inhibited maltose export and reduced root growth of heterografts. These results indicated that rootstock cotyledon, especially its starch content, played a buffering role in the growth regulation of cucumber-pumpkin heterografts. Taken together, our results provided a major contribution to our understanding of source-sink sugar partitioning and scion-rootstock growth balancing in cucumber-pumpkin heterografts.


Subject(s)
Cucumis sativus , Cucurbita , Cucumis sativus/genetics , Cucurbita/genetics , Heterografts , Cotyledon , Sugars , Starch , Sucrose
8.
Sci Prog ; 107(1): 368504241235506, 2024.
Article in English | MEDLINE | ID: mdl-38490168

ABSTRACT

A predictive model was proposed for determining the high-temperature free height of perfluoroalkoxy alkane springs in air-operated double-bellow pumps with the aim of investigating their relaxation. The model incorporates classical spring deformation theory and considers the material, structure, and real-world operating conditions of the perfluoroalkoxy alkane springs. Experimental validation of the model is also conducted. This study examines the effects of varying temperatures and pre-compression values on the relaxation of perfluoroalkoxy alkane springs' free height. It collects relaxation curves under different temperatures and various pre-compression conditions. The results indicate that spring relaxation increases with higher temperatures when there is no pre-compression. Furthermore, increasing pre-compression at the same temperatures leads to greater spring relaxation. Pre-compression has a more significant impact on spring relaxation. By comparing the experimental data with the simulated curve generated by the model, it is evident that the predicted spring free height relaxation closely aligns with the actual measurements. This verification demonstrates the effectiveness and accuracy of the proposed model in evaluating the relaxation of perfluoroalkoxy alkane springs' free height. Moreover, the model provides a valuable tool for predicting the lifespan of similar perfluoroalkoxy alkane springs in engineering applications.

9.
iScience ; 27(3): 109089, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38390495

ABSTRACT

Basketball, as one of the most popular sports in the world, has millions of followers and massive economic value. Basketball evolves so fast that it requires teams with smarter strategies, better skills, and stronger players. However, the competition strategies and training methods in basketball are still experience-based, lacking precise data to drive for more efficient training and strategies. On the other hand, flexible sensors, as a new class of sensors, have been a hotspot for scientific research and widely applied in various fields. Due to their excellent characteristics of flexibility, wearing comfort, convenience, and response speed, integrating flexible sensors into basketball has the potential to greatly promote all aspects of the sport. This paper aims to bring more fusion between basketball and flexible sensors. In this perspective, we first perform a review of the history of sensing technologies in the basketball sport and discuss mechanisms of flexible sensors applied on basketball players. Then specific scenarios for flexible sensors applied in basketball were elaborated on in detail. Finally, we envision the potential applications of flexible sensors in basketball and present our views on future development directions. We hope this paper can depict how flexible sensing technology is integrated into basketball systems and point out the future development of basketball with the help of flexible sensors.

10.
Front Pharmacol ; 15: 1330589, 2024.
Article in English | MEDLINE | ID: mdl-38370478

ABSTRACT

Background: Migraine is a prevalent, recurrent condition with substantial disease burden. Chinese herbal medicine (CHM) has been used frequently for migraine in controlled clinical settings. This study is to summarise the characteristics of patients who seek clinical care in a tertiary Chinese medicine hospital in China; to gather their preferences and values of using CHM; to explore the effect of CHM for migraine and its comorbidities in a real-world setting, and to collect first-hand expertise of clinicians' practice pattern in prescribing CHM for migraine. Methods: This registry-based cohort study was prospectively conducted at Guangdong Provincial Hospital of Chinese Medicine from December 2020 to May 2022. Adult migraine patients seeking their initial anti-migraine clinical care at the hospital were consecutively recruited and followed up for 12 weeks. Practitioners specialised in headache management prescribed individualised treatments without research interference. Standardised case report forms were employed to gather information on patients' preferences and perspective of seeking clinical care, as well as to assess participants' migraine severity, comorbidities, and quality of life, at 4-weeks intervals. Various analytical methods were utilised based on the computed data. Results: In this study, we observed 248 participants. Of these, 73 received CHM treatment for 28 days or longer. Notably, these participants exhibited a greater disease severity, compared to those treated with CHM for less than 28 days. Of the 248 participants, 83.47% of them expected CHM would effectively reduce the severity of their migraine, around 50% expected effects for migraine-associated comorbidities, while 51.61% expressing concerns about potential side effects. CHM appeared to be effective in reducing monthly migraine days and pain intensity, improving patients' quality of life, and potentially reducing comorbid anxiety, with a minimum of 28 days CHM treatment. Herbs such as gan cao, gui zhi, chuan xiong, fu ling, bai zhu, yan hu suo, etc. were frequently prescribed for migraine, based on patients' specific symptoms. Conclusion: CHM appeared to be beneficial for migraine and comorbid anxiety in real-world clinical practice when used continuously for 28 days or more. Clinical Trial Registration: clinicaltrials.gov, identifier ChiCTR2000041003.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 124010, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38340446

ABSTRACT

In this study, we aimed to synthesis of Fe-doping green fluorescent carbon dots (G-CDs) through the co-electrolysis of chrysoidine G and potassium ferrocyanide for Cr(VI) detection. The use of potassium ferrocyanide improves the quantum yield and sensing performance of G-CDs toward Cr(VI). The G-CDs have a maximum excitation wavelength of 308 nm and an emission wavelength of 510 nm. Comprehensive analyses including Raman, FT-IR, and XPS provided insights into the chemical structure and composition of the G-CDs. Under optimal conditions, G-CDs demonstrated concentration-dependent quenching upon interaction with Cr(VI). A linear relationship within the range of 0.25-100 µM was established with a calibration equation of ΔF/F0 = 0.005 + 0.015CCr(VI), yielding an R2 value of 0.996 and a limit of detection of 0.15 µM. The applicability of the G-CDs method was demonstrated by successful Cr(VI) detection in water samples with recovery rates ranging from 98.8 % to 100.1 % and relative standard deviation within 3.0 %. The fluorescence lifetime and Zeta potential measurements confirmed that the mechanism was via a static quenching process, while redox reaction, nanoparticle aggregation, and surface charge variation also played significant roles.

12.
Front Cell Infect Microbiol ; 13: 1297078, 2023.
Article in English | MEDLINE | ID: mdl-38156316

ABSTRACT

The rapid evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has led to the emergence of new variants with different genetic profiles, with important implications for public health. The continued emergence of new variants with unique genetic features and potential changes in biological properties poses significant challenges to public health strategies, vaccine development, and therapeutic interventions. Omicron variants have attracted particular attention due to their rapid spread and numerous mutations in key viral proteins. This review aims to provide an updated and comprehensive assessment of the epidemiological characteristics, immune escape potential, and therapeutic advances of the SARS-CoV-2 Omicron XBB.1.5 variant, as well as other variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Public Health , Mutation
13.
Nano Lett ; 23(21): 9900-9906, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37862605

ABSTRACT

Scanning near-field optical microscope (SNOM) with nanoscale spatial resolution has been a powerful tool in studying the plasmonic properties of nano materials/structures. However, the quantification of the SNOM measurement remains a major challenge in the field due to the lack of reliable methodologies. We employed the point-dipole model to describe the tip-surface interaction upon laser illumination and theoretically derived the quantitative relationship between the measured results and the actual near-field electric field strength. Thus, we can experimentally reconstruct the near-field electric field through this theoretically calculated relationship. We also developed an experimental technique together with FEM simulation to get the above relationship experimentally and reconstruct the near-field electric field from the measurement by SNOM.

14.
Heliyon ; 9(8): e19159, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37664742

ABSTRACT

The purposes were to evaluate kinetics in lower limbs using single leg countermovement jump (SLCMJ) and to identify the differences in SLCMJ kinetics between sprinting fast players and sprinting slow players in elite university female soccer players. Seventeen participants at the national tournament level completed the survey. SLCMJ and 30 m sprinting tests were performed. A force-plate was used to collect the data of the SLCMJ test. Significant differences of concentric maximum rate of force development (RFD), concentric RFD, concentric RFD/body weight (BW), peak net takeoff force/BW, peak power, and peak power/BW existed between both legs during the SLCMJ among all the participants. For further analysis, the participants were divided into fast group and slow group based on sprinting performance. Significant differences existed between the two groups in concentric peak velocity (nondominant, p = 0.028) and vertical velocity at takeoff (nondominant, p = 0.021). Concentric maximum RFD (p = 0.036) was significantly different between both legs in the slow group. Among elite university female soccer players, the players who presented more increased asymmetry of kinetic characteristics of jumping, also showed weak sprinting performance. Moreover, the players presented the best performance in velocity of the jumping variables and also had the best sprinting performance. Coaches and players should focus on keeping inter-limb balance and developing jumping velocity to improve sports performance. In future, the cause-and-effect relationship between jumping and sprinting should be identified.

15.
Materials (Basel) ; 16(15)2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37569995

ABSTRACT

Semiconductor cleaning system ultra-clean flow control pumps are critical equipment in the semiconductor industry. Among them, the perfluoroalkoxy alkane (PFA) spring is a pivotal component to control the pump, and its dynamic performance is crucial to ensure the efficient operation of the system. However, the dynamic performance of the spring is often affected by the operating frequency. This paper studied the effect of different working frequencies on the dynamic property of the spring through compression-cycle experiments under uniaxial sinusoidal excitation. The force-displacement curves under different compression frequencies were fitted to obtain the dynamic stiffness of the PFA spring under different cyclic loading frequencies. The variation in the spring's hysteresis coefficient was evaluated using the hysteresis curves of different cyclic loading conditions. After 2 million compression experiments, the changes in dynamic stiffness, hysteresis coefficient, and spring height were investigated. The obtained results revealed that, as the frequency increases, the dynamic stiffness of the spring increases. The hysteresis coefficient of the PFA spring is the largest at 10 Hz and the smallest at 6 Hz. Upon conducting 2 million compression tests, it was discovered that the dynamic stiffness experiences the greatest attenuation rate of 4.19% at a frequency of 8 Hz, whereas the hysteresis coefficient undergoes the largest attenuation of 42.1% at a frequency of 6 Hz. The results will help to improve the design and application level of PFA springs.

16.
Natl Sci Rev ; 10(7): nwad136, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37396487

ABSTRACT

Non-linear materials are cornerstones of modern optics and electronics. Strong dependence on the intrinsic properties of particular materials, however, inhibits the at-will extension of demanding non-linear effects, especially those second-order ones, to widely adopted centrosymmetric materials (for example, silicon) and technologically important burgeoning spectral domains (for example, terahertz frequencies). Here we introduce a universal route to efficient non-linear responses enabled by exciting non-linear Thomson scattering, a fundamental process in electrodynamics that was known to occur only in relativistic electrons in metamaterial composed of linear materials. Such a mechanism modulates the trajectory of charges, either intrinsically or extrinsically provided in solids, at twice the driving frequency, allowing second-harmonic generation at terahertz frequencies on crystalline silicon with extremely large non-linear susceptibility in our proof-of-concept experiments. By offering a substantially material- and frequency-independent platform, our approach opens new possibilities in the fields of on-demand non-linear optics, terahertz sources, strong field light-solid interactions and integrated photonic circuits.

17.
Antioxidants (Basel) ; 12(7)2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37507989

ABSTRACT

Adventitious root (AR) formation is a critical process in cutting propagation of horticultural plants. Brassinosteroids (BRs) have been shown to regulate AR formation in several plant species; however, little is known about their exact effects on pepper AR formation, and the downstream signaling of BRs also remains elusive. In this study, we showed that treatment of 24-Epibrassinolide (EBL, an active BR) at the concentrations of 20-100 nM promoted AR formation in pepper (Capsicum annuum). Furthermore, we investigated the roles of apoplastic reactive oxygen species (ROS), including hydrogen peroxide (H2O2) and superoxide radical (O2•-), in EBL-promoted AR formation, by using physiological, histochemical, bioinformatic, and biochemical approaches. EBL promoted AR formation by modulating cell-wall-located polyamine oxidase (PAO)-dependent H2O2 production and respiratory burst oxidase homologue (RBOH)-dependent O2•- production, respectively. Screening of CaPAO and CaRBOH gene families combined with gene expression analysis suggested that EBL-promoted AR formation correlated with the upregulation of CaPAO1, CaRBOH2, CaRBOH5, and CaRBOH6 in the AR zone. Transient expression analysis confirmed that CaPAO1 was able to produce H2O2, and CaRBOH2, CaRBOH5, and CaRBOH6 were capable of producing O2•-. The silencing of CaPAO1, CaRBOH2, CaRBOH5, and CaRBOH6 in pepper decreased the ROS accumulation and abolished the EBL-induced AR formation. Overall, these results uncover one of the regulatory pathways for BR-regulated AR formation, and extend our knowledge of the functions of BRs and of the BRs-ROS crosstalk in plant development.

18.
Environ Sci Pollut Res Int ; 30(37): 86598-86617, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37421528

ABSTRACT

As one of the most fundamental and prevalent agronomic practices, crop rotation is of great significance for the optimization of regional planting structure and sustainable agricultural development. Therefore, crop rotation has attracted continuous attention from both researchers and producers worldwide. In recent years, many review articles have been published in the field of crop rotation. However, since most reviews usually focus on specialized directions and topics, only few systematic quantitative reviews and comprehensive analysis can fully determine the state of research. To address this knowledge gap, we present a scientometric review to determine the current research status of crop rotation by using CiteSpace software. The main findings were as follows: (1) From 2000 to 2020, five knowledge domains were identified as representing the intellectual base of crop rotation: (a) synergism and comparison of conservation agriculture measures or other management measures; (b) soil microecology, pest control, weed control, and plant disease control; (c) soil carbon sequestration and greenhouse gases (GHGs) emissions; (d) organic crop rotation and double cropping patterns; and (e) soil properties and crop productivity. (2) Six notable research fronts were identified: (a) plant-soil microbial interactions under crop rotation; (b) integrated effect with minimum soil disturbance and crop retention; (c) carbon sequestration and GHG emission reduction; (d) impact on weed control; (e) heterogeneity of rotation effects under different weather and soil conditions; and (f) comparison between long-term and short-term rotation. Overall, this study provides a comprehensive overview of crop rotation and proposes some future development trends for the researchers.


Subject(s)
Agriculture , Greenhouse Gases , Soil/chemistry , Crop Production , Crops, Agricultural
19.
Chemistry ; 29(48): e202301525, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37313774

ABSTRACT

Generally, the potential reactive "olefin pairs" in the molecular crystals satisfying Schmidt's criteria could undergo topological [2+2] cycloaddition. In this study, another factor that affects the photodimerization reactivity of chalcone analogues was found. The cyclic chalcone analogues of (E)-2-(2,4-dichlorobenzylidene)-2,3-dihydro-1H-inden-1-one (BIO), (E)-2-(naphthalen-2-ylmethylene)-2,3-dihydro-1H-inden-1-one (NIO), (Z)-2-(2,4-dichlorobenzylidene)benzofuran-3(2H)-one (BFO), and (Z)-2-(2,4-dichlorobenzylidene)benzo[b]thiophen-3(2H)-one (BTO) have been synthesized. While the geometrical parameters for the molecular packing of the above four compounds did not exceed Schmidt's criteria, [2+2] cycloaddition did not occur in the crystals of BIO and BTO. The single crystal structures and Hirshfeld surface analyses revealed that interactions of C=O⋅⋅⋅H (CH2 ) existed between adjacent molecules in the crystal of BIO. Therefore, the carbonyl and methylene groups linked with one carbon atom in carbon-carbon double bond were tightly confined in the lattice, acting as a tweezer to inhibit free movement of the double bond and suppressing [2+2] cycloaddition. In the crystal of BTO, similar interactions of Cl⋅⋅⋅S and C=O⋅⋅⋅H (C6 H4 ) prevented free movement of the double bond. In contrast, the intermolecular interaction of C=O⋅⋅⋅H only exists around the carbonyl group in the crystals of BFO and NIO, leaving the C=C double bonds to move freely and allowing the occurrence of [2+2] cycloaddition. Driven by photodimerization, the needle-like crystals of BFO and NIO displayed evident photo-induced bending behavior. This work demonstrates that the intermolecular interactions around carbon-carbon double bond affect the [2+2] cycloaddition reactivity except for Schmidt's criteria. These findings provide valuable insights into the design of photomechanical molecular crystalline materials.

20.
Hum Mol Genet ; 32(18): 2822-2831, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37384395

ABSTRACT

Oral-facial-digital syndromes (OFDS) are a group of clinically and genetically heterogeneous disorders characterized by defects in the development of the face and oral cavity along with digit anomalies. Pathogenic variants in over 20 genes encoding ciliary proteins have been found to cause OFDS through deleterious structural or functional impacts on primary cilia. We identified by exome sequencing bi-allelic missense variants in a novel disease-causing ciliary gene RAB34 in four individuals from three unrelated families. Affected individuals presented a novel form of OFDS (OFDS-RAB34) accompanied by cardiac, cerebral, skeletal and anorectal defects. RAB34 encodes a member of the Rab GTPase superfamily and was recently identified as a key mediator of ciliary membrane formation. Unlike many genes required for cilium assembly, RAB34 acts selectively in cell types that use the intracellular ciliogenesis pathway, in which nascent cilia begin to form in the cytoplasm. We find that the protein products of these pathogenic variants, which are clustered near the RAB34 C-terminus, exhibit a strong loss of function. Although some variants retain the ability to be recruited to the mother centriole, cells expressing mutant RAB34 exhibit a significant defect in cilium assembly. While many Rab proteins have been previously linked to ciliogenesis, our studies establish RAB34 as the first small GTPase involved in OFDS and reveal the distinct clinical manifestations caused by impairment of intracellular ciliogenesis.


Subject(s)
Nuclear Proteins , Orofaciodigital Syndromes , Humans , Cilia/genetics , Orofaciodigital Syndromes/genetics , Orofaciodigital Syndromes/metabolism , Nuclear Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...