Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(31): 41165-41175, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39051939

ABSTRACT

Commercially available rare-earth-doped inorganic oxide materials have been widely applied as X-ray scintillators, but the fragile characteristics, high detection limit, and harsh preparation condition seriously restrict their wide applications. Furthermore, it remains a huge challenge to realize X-ray flexible imaging technology for real-time monitoring of the curving interface of complex devices. To address these issues, we herein report two isostructural cuprous halides of zero-dimensional (0D) [AEPipz]CuX3·X·H2O (AEPipz = N-aminoethylpiperazine, X = Br and I) with controllable size to nanosize crystal as highly efficient scintillators toward flexible X-ray imaging. These cuprous halides exhibit highly efficient cyan photoluminescence and radioluminescence emissions with the highest quantum yield of 92.1% and light yield of 62,400 photons MeV-1, respectively, surpassing most of the commercially available inorganic scintillators. Meanwhile, the ultralow detection limit of 95.7 nGyair s-1 was far below the X-ray dose required for diagnosis (5.5 µGyair s-1). More significantly, the flexible film is facilely assembled with excellent foldability and high crack resistance, which further acts as a scintillation screen achieving a high spatial resolution of 17.4 lp mm-1 in X-ray imaging, demonstrating the potential application in wearable radiation radiography. The combined advantages of high light yield, low detection limit, and excellent flexibility promote these 0D cuprous halides as the most promising X-ray scintillators.

2.
RSC Adv ; 13(28): 19039-19045, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37362341

ABSTRACT

Organic-inorganic hybrid low-dimensional lead halides have garnered significant interest in the realm of solid-state optical materials due to their unique properties and potential applications. In this study, we report the synthesis, characterization and application of Mn2+-doped one-dimensional (1D) [AEP]PbCl5·H2O hybrid lead halide perovskites with tunable photoluminescence properties. The Mn2+ doping leads to a redshift of the dominant emission wavelength from 463 nm to 630 nm, with the optimal doping concentration resulting in an enhanced photoluminescence quantum yield (PLQY) from less than 1% to 8.96%. The structural and optical stability of these doped perovskites have been thoroughly investigated revealing excellent performance under humid and high-temperature conditions. Perovskite-PVP composite films exhibit high crystallization and bright orange-red emission under UV excitation. Furthermore, we demonstrate the successful fabrication of a white LED device using the Mn2+-doped perovskite in combination with commercial green and blue phosphors. The fabricated LED exhibits a high color rendering index (CRI) of 87.2 and stable electroluminescence performance under various operating currents and extended operation times. Our findings highlight the potential of Mn2+-doped 1D hybrid lead halide perovskites as efficient and stable phosphors for high-performance white light emitting diodes and other optoelectronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL