Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(23): e202402215, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38581164

ABSTRACT

The development of a methodology for synthesizing value-added urea (CO(NH2)2) via a renewable electricity-driven C-N coupling reaction under mild conditions is highly anticipated. However, the complex catalytic active sites that act on the carbon and nitrogen species make the reaction mechanism unclear, resulting in a low efficiency of C-N coupling from the co-reduction of carbon dioxide (CO2) and nitrate (NO3 -). Herein, we propose a novel tandem catalyst of Mo-PCN-222(Co), in which the Mo sites serve to facilitate nitrate reduction to the *NH2 intermediate, while the Co sites enhance CO2 reduction to carbonic oxide (CO), thus synergistically promoting C-N coupling. The synthesized Mo-PCN-222(Co) catalyst exhibited a noteworthy urea yield rate of 844.11 mg h-1 g-1, alongside a corresponding Faradaic efficiency of 33.90 % at -0.4 V vs. reversible hydrogen electrode (RHE). By combining in situ spectroscopic techniques with density functional theory calculations, we demonstrate that efficient C-N coupling is attributed to a tandem system in which the *NH2 and *CO intermediates produced by the Mo and Co active sites of Mo-PCN-222(Co) stabilize the formation of the *CONH2 intermediate. This study provides an effective avenue for the design and synthesis of tandem catalysts for electrocatalytic urea synthesis.

2.
J Vis Exp ; (198)2023 08 25.
Article in English | MEDLINE | ID: mdl-37677004

ABSTRACT

Ding's roll method is one of the most commonly used manipulations in traditional Chinese massage (Tuina) clinics and one of the most influential contemporary Tuina manipulations in China. It is based on the traditional rolling method commonly used in the one finger Zen genre and named Ding's roll method. Due to its anti-inflammatory and blood circulation-promoting effects, Ding's rolling method has sound therapeutic effects on myopathy. Because of the large area of force applied to human skin, Ding's roll method is challenging to perform on experimental animals with small skin areas, such as rats and rabbits. Additionally, the strength of Tuina applied to the human body differs from that applied to experimental animals, so it may happen that the strength is too high or too low to achieve the therapeutic effect of Tuina during the experiment. This experiment aims to create a simple massager suitable for rats based on Ding's rolling manipulation parameters (strength, frequency, Tuina duration). The device can standardize manipulation in animal experiments and reduce the variation in Tuina force applied to different animals due to subjective factors. A rat model of notexin-induced skeletal muscle injury was established, and plasma injury markers creatine kinase (CK) and fatty acid binding protein 3 (FABP3) were used to assess the therapeutic effect of Tuina on skeletal muscle injury. The results showed that this Tuina massager could reduce the levels of CK and FABP3 expression and slow down the degree of skeletal muscle injury. Therefore, the Tuina massager described here, mimicking Ding's roll method, contributes to standardizing Tuina manipulation in experimental research and is of great help for subsequent research on the molecular mechanism of Tuina for myopathy.


Subject(s)
Muscular Diseases , Humans , Animals , Rats , Rabbits , Muscular Diseases/chemically induced , Muscular Diseases/diagnosis , Muscular Diseases/therapy , Muscle, Skeletal , Elapid Venoms , China
3.
Langmuir ; 38(9): 2811-2820, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35191704

ABSTRACT

To find a more efficient way to generate photocatalytic hydrogen, we developed the interfacial photocatalytic mode, in which the photocatalytic reaction can be transferred to a high-energy interfacial area. The new interfacial mode in this work is assembled with the help of carbonized mushrooms, which is an ideal water transporter as well as an excellent photothermal converter. The higher temperature from efficient light-to-heat conversion performance and thermal localization promote the efficiency of hydrogen evolution, and some effects peculiar to the interfacial mode can make the departure of hydrogen from the active sites of the photocatalyst smoother. As a result, the active sites can be exposed in a timely manner to allow the progress of the next cycle of the photocatalytic reaction to be smoother. The efficiency of interfacial photocatalytic hydrogen production can reach >10 times that of the corresponding sample in the traditional bulk water mode. This work has allowed further exploration of the construction of the interfacial photocatalytic mode, provided a reliable experimental basis for the development of the interfacial mode, and illuminated a new path for the development of photocatalytic water splitting.

4.
Small ; 17(41): e2102300, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34510727

ABSTRACT

Nitrogen-coordinated metal-modified carbon is regarded as a novel frontier electrocatalyst in energy conversion devices. However, the construction of intrinsic defects in a carbon matrix remains a great challenge. Herein, N-coordinated magnetic metal (Fe, Co) modified porous carbon dodecahedrons (Fe/Co-NPCD) with a large surface area, rich intrinsic defects, and evenly distributed metal-Nx species are successfully synthesized via the rational design of iron precursor and the bimetallic-organic frameworks. Because of a synergistic effect between N-coordinated dual magnetic metal active sites, the Fe/Co-NPCD exhibits exceptional electrocatalytic activity and electrochemical stability. A solar cell fabricates with the Fe/Co-NPCD yields an impressive power conversion efficiency of 8.35% in dye-sensitized solar cells, superior to that of mono-metal-doped carbon-based cells and conventional Pt-based cells. Furthermore, density functional theory calculations illustrate that Fe, Co, and N doping are in favor of improving the adsorption capacity of the catalyst for I3 - species by optimizing the magnetic momentum between the magnetic metal atoms, thereby upgrading its catalytic activity. This work develops a general strategy for synthesizing a high-performance defect-rich carbon-based catalyst, and offers valuable insight into the role of magnetic metals in catalysis, which can be used to guide the design of high-performance catalysts in the energy field.

5.
J Colloid Interface Sci ; 604: 441-457, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34273781

ABSTRACT

Developing electrocatalysts with excellent catalytic performance and superior durability for hydrogen evolution reaction (HER) remains a challenge. Herein, metal-nitrogen sites (M-Nx, M = Ni and Cu) are successfully implanted into zeolitic imidazolate zinc framework (ZIF-8)-derived nitrogen-doped porous carbon (ZIF/NC) to prepare Ni-ZIF/NC and Cu-ZIF/NC electrocatalysts for the HER. These M-Nx active sites significantly enhanced the electrocatalytic activities of Ni-ZIF/NC and Cu-ZIF/NC. Metal Ni acted as a catalyst for catalysis of Ni-ZIF/NC to form carbon nanotubes-like structures, which provided convenient ion transmission pathways. Owing to its special morphology and an increased number of defects, Ni-ZIF/NC displayed superior electrocatalytic activity in the HER compared to those of Cu-ZIF/NC and ZIF/NC. In an alkaline environment, Ni-ZIF/NC exhibited an overpotential at the current density of 10 mA cm-2 (η10) of 163.0 mV and Tafel slope of 85.0 mV dec-1, demonstrating an electrocatalytic property equivalent to that of Pt/C. In an acidic environment, Ni-ZIF/NC yielded a η10 of 177.4 mV and Tafel slope of 83.9 mV dec-1, which were comparable to those of 20 wt.% Pt/C. Moreover, Ni-ZIF/NC and Cu-ZIF/NC also exhibited superior stabilities in alkaline environments. This work offers a valuable strategy for controlling the morphology and implanting M-Nx active sites into carbon for designing novel catalysts for use in alternative new energy applications.


Subject(s)
Nanotubes, Carbon , Zeolites , Catalytic Domain , Hydrogen , Nitrogen , Porosity , Zinc
6.
J Colloid Interface Sci ; 603: 651-665, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34225070

ABSTRACT

To fabricate high-quality catalysts with abundant active sites, a series of transition-metal-modified nitrogenous carbon catalysts (Ta-NOC, Nb-NOC, and Nb/Ta-NOC) was successfully fabricated via pyrolysis and ion exchange. Owing to the high conductivity and ion transport capacity of its unique nitrogen-carbon structure, and synergistic effect of dual-metal active sites on modulating electronic structure, Nb/Ta-NOC catalyst exhibited an excellent catalytic performance and a remarkable electrochemical stability in triiodide reduction reaction (IRR) and hydrogen evolution reaction (HER). Nb/Ta-NOC catalyst achieved an ideal conversion efficiency of 8.45% for IRR in solar cells, which was higher than that of Pt electrode (7.63%). Furthermore, Nb/Ta-NOC catalyst exhibited a small overpotential of 145 mV at a current density of 10 mA·cm-2 and a Tafel slope of 77 mV dec-1 for HER. This work provided a new approach for the rational design of the active-sites-rich electrocatalysts for energy conversion applications.

7.
J Colloid Interface Sci ; 601: 12-29, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34052724

ABSTRACT

Developing highly-efficient multifunctional electrocatalysts for energy conversion devices is of great importance. A sequence of nano-sized bimetal (Al, Cr, Fe) niobium oxide nanoparticles anchored on aloe peel-derived porous carbon skeleton hybrids (AN/APPC, CN/APPC, and FN/APPC) are successfully prepared via co-precipitation avenue and used as electrocatalysts for photovoltaics and alkaline hydrogen evolution reaction. Benefiting from the synergies between nano-sized metal niobium oxides and highly conductive porous carbon skeleton, these robust polycomponent hybrid electrocatalysts exhibit superior catalytic performances for accelerating the triiodide reduction and hydrogen evolution reaction. The solar cell with AN/APPC electrocatalyst achieves an outstanding device efficiency of 7.31%, superior to that with Pt (6.84%), and the AN/APPC electrocatalyst exhibit an overpotential (131.6 mV) when the current density is 10 mA cm-2 and Tafel slope (54 mV dec-1) in 1 M KOH for hydrogen evolution reaction. The AN/APPC electrocatalysts illustrate remarkable electrochemical durability in both I3-/I- electrolyte and alkaline media. Furthermore, the catalytic mechanism was clarified both from the electronic structure and work function through first-principle density functional theory (DFT) calculations. This work opens a new avenue for electrocatalysis field via using nano-sized porous bio-carbon skeleton loaded with niobium-based binary metal.

8.
ACS Appl Mater Interfaces ; 13(18): 21207-21216, 2021 May 12.
Article in English | MEDLINE | ID: mdl-33909395

ABSTRACT

Energy and mass transfer in photocatalytic systems plays a significant role in photocatalytic water splitting, but relevant research has long been ignored. Here, an interfacial photocatalytic mode for photocatalytic hydrogen production is exploited to optimize the energy and mass flows and mainly includes a heat-insulating layer, a water-channel layer, and a photothermal photocatalytic layer. In this mode, the energy flow is optimized for efficient spreading, conversion, and utilization. A low-loss path (ultrathin water film) and an efficient heat localized zone are constructed, where light energy, especially infrared-light energy, can transfer to the target functional membrane surface with low loss and the thermal energy converted from light can be localized for further use. Meanwhile, the optimization of the mass flow is achieved by improving the desorption capacity of the products. The generated hydrogen bubbles can rapidly leave from the surface of the photocatalyst, along with the active sites being released timely. Consequently, the photocatalytic hydrogen production rate can be increased up to about 6.6 times that in a conventional photocatalytic mode. From the system design aspect, this work provides an efficient strategy to improve the performance of photocatalytic water splitting by optimizing the energy and mass flows.

9.
Adv Mater ; 32(12): e1906361, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32048360

ABSTRACT

Infrared light, more than 50% of the solar light energy, is long-termly ignored in the photocatalysis field due to its low photon energy. Herein, infrared-light-responsive photoinduced carriers driver is first constructed taking advantage of pyroelectric effect for enhancing photocatalytic hydrogen evolution. In order to give full play to its role, the photocatalytic reaction is localized on the surface and interface of the composite based on a new semi-immersion type heat collected photocatalytic microfiber system. The system is consisted of distinctive pyroelectric substrate poly(vinylidene fluoride-co-hexafluropropylene (PVDF-HFP), typical photothermal material carbon nanotube (CNT), and representative photocatalyst CdS. The transient photocurrent, electrochemical impedance spectroscopy, time-resolved photoluminescence and pyroelectric potential characterizations indicate that the infrared-light-responsive carriers driver significantly promotes the photogenerated charge separation, accelerates carrier migration, and prolongs carrier lifetime. The photocatalytic hydrogen evolution efficiency is remarkably improved more than five times with the highest average apparent quantum yield of 16.9%. It may open up new horizons to photocatalytic technology for the more efficient use of infrared light.

10.
Polymers (Basel) ; 10(5)2018 Apr 26.
Article in English | MEDLINE | ID: mdl-30966508

ABSTRACT

Two issues are required to be solved to bring intrinsically self-healing polymer coatings into real applications: remote activation and satisfied practical properties. Here, we used MXene, a newly reported two-dimensional material, to provide an epoxy coating with light-induced self-healing capabilities and we worked to enhance the properties of that coating. The self-healing coatings had a reversible crosslinking network based on the Diels-Alder reaction among maleimide groups from bis(4-maleimidopheny)methane and dangling furan groups in oligomers that were prepared through the condensation polymerization of diglycidylether of bisphenol A and furfurylamine. The results showed that the delaminated MXene flakes were small in size, around 900 nm, and dispersed well in self-healing coatings. The MXene flakes of only 2.80 wt % improved greatly the pencil hardness of the coating hardness from HB to 5H and the polarization resistance from 4.3 to 428.3 MΩ cm-2. The self-healing behavior, however, was retarded by MXene flakes. Leveling agent acted a key part here to facilitate the gap closure driven by reverse plasticity to compensate for the limitation of macromolecular mobility resulting from the MXene flakes. The self-healing of coatings was achieved in 30 s by thermal treatment at 150 °C. The efficient self-healing was also demonstrated based on the recovery of the anti-corrosion capability. MXene flakes also played an evident photothermal role in generating heat via irradiation of near-infrared light at 808 nm and focused sunlight. The healing can be quickly obtained in 10 s under irradiation of near-infrared light at 808 nm having a power density of 6.28 W cm-2 or in 10 min under irradiation of focused sunlight having a power density of 4.0 W cm-2.

11.
ACS Appl Mater Interfaces ; 8(39): 25645-25649, 2016 Oct 05.
Article in English | MEDLINE | ID: mdl-27640732

ABSTRACT

Graphene is a promising candidate in analog electronics with projected operation frequency well into the terahertz range. In contrast to the intrinsic cutoff frequency (fT) of 427 GHz, the maximum oscillation frequency (fmax) of graphene device still remains at low level, which severely limits its application in radio frequency amplifiers. Here, we develop a novel transfer method for chemical vapor deposition graphene, which can prevent graphene from organic contamination during the fabrication process of the devices. Using a self-aligned gate deposition process, the graphene transistor with 60 nm gate length exhibits a record high fmax of 106 and 200 GHz before and after de-embedding, respectively. This work defines a unique pathway to large-scale fabrication of high-performance graphene transistors, and holds significant potential for future application of graphene-based devices in ultra high frequency circuits.

SELECTION OF CITATIONS
SEARCH DETAIL
...