Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 14: 565-573, 2023.
Article in English | MEDLINE | ID: mdl-37179593

ABSTRACT

A novel strategy is provided to improve the absorption of SiC nanomaterials through surface carbonization of SiC nanowires and hydrolysis. SiC@C-ZnO composites were synthesized with different dosages of ZnNO3·6H2O. Composition, microstructure, and electromagnetic properties of the composites were characterized and analyzed. Results from TEM and XRD show that crystalline ZnO particles adhere to the surface of amorphous carbon, and the ZnO content increases as a function of a dosage of ZnNO3·6H2O. The as-prepared SiC@C-ZnO hybrids exhibit effective electromagnetic absorption, which is related to a synergy effect of different dielectric loss processes. The minimum reflection loss reached -65.4 dB at 11 GHz at a sample thickness of 3.1 mm, while the effective absorption bandwidth (EAB) reached 7 GHz at a sample thickness of 2.56 mm. Furthermore, the EAB of the samples can also cover the whole X band and Ku band at small sample thicknesses (2.09-3.47 mm). The excellent properties of the materials suggest great prospect as electromagnetic absorbers.

2.
Polymers (Basel) ; 14(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36080652

ABSTRACT

In order to clearly explain the large deformation mechanical characteristics of polyurea under impact and to construct a dynamic model that can be used for finite element analysis, two kinds of polyurea materials were prepared by formula design, and their uniaxial tensile properties were tested with strain rates ranging from 10-3~103 s-1 using an electronic universal testing machine and a split Hopkinson tensile bar (SHTB). The tensile stress-strain curves of polyurea were obtained under different strain rates. The difference in tensile mechanical properties of the materials was analyzed under dynamic loading and quasi-static loading. Based on the nonlinear viscoelastic theory and the energy dissipation rate inequality, a dynamic visco-hyperelastic constitutive model of polyurea elastomer was established. The research results showed that the uniaxial tensile stress-strain curves of two kinds of polyurea at different strain rates had obvious nonlinear characteristics and strain rate sensitivity and that their tensile strength increased with increased strain rate. The polyurea gradually changed from exhibiting rubbery mechanical behavior under quasi-static loading to glassy mechanical behavior under dynamic loading. The fitting analysis of experimental data and the results of finite element simulation showed that the dynamic constitutive model can predict the nonlinear mechanical behavior of polyurea elastomers over a wide range of strain rates. The research results could contribute to a deepening of the understanding of the damage and failure behavior of polyurea under impact load and provide a theoretical basis for numerical studies on impact safety design of polyurea-coated protective structures.

3.
Nanomaterials (Basel) ; 11(12)2021 Dec 18.
Article in English | MEDLINE | ID: mdl-34947787

ABSTRACT

In this work, a batch of novel ternary hybrids (SiC@C-Fe3O4), characterized by SiC nanowires core, carbon shell, and adhered Fe3O4 nanoparticles were controllably synthesized via surface carbonization of SiCnw followed by hydrothermal reaction. Carbon, which was derived from SiC with nanometer thickness, possesses an amorphous structure, while Fe3O4 nanoparticles are in a crystalline state. Simultaneously, the inducement of Fe3O4 nanoparticles can provide significant magnetic loss, which is well-tuned by changing the molar content of iron precursors (FeCl3·6H2O and FeCl2·4H2O). SiC@C-Fe3O4 hybrids show great electromagnetic absorption performance owing to the synergy effect of dielectric and magnetic losses. The minimum refection loss can reach to -63.71 dB at 11.20 GHz with a thickness of 3.10 mm, while the broad effective absorption bandwidth (EAB) can reach to 7.48 GHz in range of 10.52-18.00 GHz with a thickness of 2.63 mm. Moreover, the EAB can also cover the whole X band and Ku band. The outstanding performance of the obtained material implys that it is a promising candidate as an electromagnetic absorber.

SELECTION OF CITATIONS
SEARCH DETAIL
...