Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.508
Filter
1.
Ann Hematol ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722387

ABSTRACT

BACKGROUND: Acute myeloid leukemia (AML) patients with various nucleophosmin 1 (NPM1) mutations are controversial in the prognosis. This study aimed to investigate the prognosis of patients according to types of NPM1 mutations (NPM1mut). METHODS: Bone marrow samples of 528 patients newly diagnosed with AML, were collected for morphology, immunology, cytogenetics, and molecular biology examinations. Gene mutations were detected by next-generation sequencing (NGS) technology. RESULTS: About 25.2% of cases exhibited NPM1mut. 83.5% of cases were type A, while type B and D were respectively account for 2.3% and 3.0%. Furthermore, 15 cases of rare types were identified, of which 2 cases have not been reported. Clinical characteristics were similar between patients with A-type NPM1 mutations (NPM1A - type mut) and non-A-type NPM1 mutations (NPM1non - A-type mut). Event-free survival (EFS) was significantly different between patients with low NPM1non - A-type mut variant allele frequency (VAF) and low NPM1A - type mut VAF (median EFS = 3.9 vs. 8.5 months, P = 0.020). The median overall survival (OS) of the NPM1non - A-type mutFLT3-ITDmut group, the NPM1A - type mutFLT3-ITDmut group, the NPM1non - A-type mutFLT3-ITDwt group, and the NPM1A - type mutFLT3-ITDwt group were 3.9, 10.7, 17.3 and 18.8 months, while the median EFS of the corresponding groups was 1.4, 5.0, 7.6 and 9.2 months (P < 0.0001 and P = 0.004, respectively). CONCLUSIONS: No significant difference was observed in OS and EFS between patients with NPM1A - type mut and NPM1non - A-type mut. However, types of NPM1 mutations and the status of FLT3-ITD mutations may jointly have an impact on the prognosis of AML patients.

2.
Int J Biol Sci ; 20(7): 2640-2657, 2024.
Article in English | MEDLINE | ID: mdl-38725843

ABSTRACT

Esophageal carcinoma is amongst the prevalent malignancies worldwide, characterized by unclear molecular classifications and varying clinical outcomes. The PI3K/AKT/mTOR signaling, one of the frequently perturbed dysregulated pathways in human malignancies, has instigated the development of various inhibitory agents targeting this pathway, but many ESCC patients exhibit intrinsic or adaptive resistance to these inhibitors. Here, we aim to explore the reasons for the insensitivity of ESCC patients to mTOR inhibitors. We assessed the sensitivity to rapamycin in various ESCC cell lines by determining their respective IC50 values and found that cells with a low level of HMGA1 were more tolerant to rapamycin. Subsequent experiments have supported this finding. Through a transcriptome sequencing, we identified a crucial downstream effector of HMGA1, FKBP12, and found that FKBP12 was necessary for HMGA1-induced cell sensitivity to rapamycin. HMGA1 interacted with ETS1, and facilitated the transcription of FKBP12. Finally, we validated this regulatory axis in in vivo experiments, where HMGA1 deficiency in transplanted tumors rendered them resistance to rapamycin. Therefore, we speculate that mTOR inhibitor therapy for individuals exhibiting a reduced level of HMGA1 or FKBP12 may not work. Conversely, individuals exhibiting an elevated level of HMGA1 or FKBP12 are more suitable candidates for mTOR inhibitor treatment.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , HMGA1a Protein , MTOR Inhibitors , Proto-Oncogene Protein c-ets-1 , Humans , Cell Line, Tumor , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/genetics , Proto-Oncogene Protein c-ets-1/metabolism , Proto-Oncogene Protein c-ets-1/genetics , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , HMGA1a Protein/metabolism , HMGA1a Protein/genetics , MTOR Inhibitors/pharmacology , MTOR Inhibitors/therapeutic use , Tacrolimus Binding Protein 1A/metabolism , Tacrolimus Binding Protein 1A/genetics , Animals , Sirolimus/pharmacology , Sirolimus/therapeutic use , Signal Transduction/drug effects , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/drug therapy , TOR Serine-Threonine Kinases/metabolism , Mice , Mice, Nude
3.
Environ Sci Technol ; 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691809

ABSTRACT

Although electro-Fenton (EF) processes can avoid the safety risks raised by concentrated hydrogen peroxide (H2O2), the Fe(III) reduction has always been either unstable or inefficient at high pH, resulting in catalyst deactivation and low selectivity of H2O2 activation for producing hydroxyl radicals (•OH). Herein, we provided a strategy to regulate the surface dipole moment of TiO2 by Fe anchoring (TiO2-Fe), which, in turn, substantially increased the H2O2 activation for •OH production. The TiO2-Fe catalyst could work at pH 4-10 and maintained considerable degradation efficiency for 10 cycles. Spectroscopic analysis and a theoretical study showed that the less polar Fe-O bond on TiO2-Fe could finely tune the polarity of H2O2 to alter its empty orbital distribution, contributing to better ciprofloxacin degradation activity within a broad pH range. We further verified the critical role of the weakened polarity of H2O2 on its homolysis into •OH by theoretically and experimentally investigating Cu-, Co-, Ni-, Mn-, and Mo-anchored TiO2. This concept offers an avenue for elaborate design of green, robust, and pH-universal cathodic Fenton-like catalysts and beyond.

4.
Anal Chim Acta ; 1306: 342586, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38692787

ABSTRACT

BACKGROUND: Early prostatic cancer (PCa) diagnosis significantly improves the chances of successful treatment and enhances patient survival rates. Traditional enzyme cascade-based early cancer detection methods offer efficiency and signal amplification but are limited by cost, complexity, and enzyme dependency, affecting stability and practicality. Meanwhile, sarcosine (Sar) is commonly considered a biomarker for PCa development. It is essential to develop a Sar detection method based on cascade reactions, which should be efficient, low skill requirement, and suitable for on-site testing. RESULTS: To address this, our study introduces the synthesis of organic-inorganic self-assembled nanoflowers to optimize existing detection methods. The Sar oxidase (SOX)-inorganic hybrid nanoflowers (Cu3(PO4)2:Ce@SOX) possess inherent fluorescent properties and excellent peroxidase activity, coupled with efficient enzyme loading. Based on this, we have developed a dual-mode multi-enzyme cascade nanoplatform combining fluorescence and colorimetric methods for the detection of Sar. The encapsulation yield of Cu3(PO4)2:Ce@SOX reaches 84.5 %, exhibiting a remarkable enhancement in catalytic activity by 1.26-1.29 fold compared to free SOX. The present study employing a dual-signal mechanism encompasses 'turn-off' fluorescence signals ranging from 0.5 µM to 60 µM, with a detection limit of 0.226 µM, and 'turn-on' colorimetric signals ranging from 0.18 µM to 60 µM, with a detection limit of 0.120 µM. SIGNIFICANCE: Furthermore, our study developed an intelligent smartphone sensor system utilizing cotton swabs for real-time analysis of Sar without additional instruments. The nano-platform exhibits exceptional repeatability and stability, rendering it well-suited for detecting Sar in authentic human urine samples. This innovation allows for immediate analysis, offering valuable insights for portable and efficient biosensors applicable to Sar and other analytes.


Subject(s)
Colorimetry , Oxidation-Reduction , Sarcosine , Smartphone , Sarcosine/urine , Sarcosine/analysis , Sarcosine/chemistry , Humans , Nanostructures/chemistry , Limit of Detection , Spectrometry, Fluorescence , Prostatic Neoplasms/diagnosis , Fluorescence , Biosensing Techniques , Sarcosine Oxidase/chemistry
5.
Free Radic Biol Med ; 220: 324-332, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704054

ABSTRACT

BACKGROUND: Selenoproteins regulate pathways controlling neurodevelopment, e.g., redox signaling and thyroid hormone metabolism. However, studies investigating maternal selenium in relation to child neurodevelopmental disorders are scarce. METHODS: 719 mother-child pairs from the prospective population-based Odense Child Cohort study in Denmark were included. Three selenium biomarkers, i.e. concentrations of serum selenium, selenoprotein P (SELENOP), and activity of glutathione peroxidase 3 (GPX3), along with serum copper, zinc and iron were measured in early third trimester (at 28.9+/-0.8 weeks of pregnancy). ADHD and ASD traits in children were assessed systematically using the established Child Behaviour Checklist at 5 years of age, based on a Danish reference cohort with cut-off at 90th percentile. Multivariable regression models adjusted for biologically relevant confounders were applied. RESULTS: 155 of 719 (21.6 %) children had ASD traits and 59 of 719 (8.2 %) children had traits of ADHD at 5 years of age. In crude and adjusted models, all three selenium biomarkers associated inversely with ADHD traits. For ADHD, fully adjusted OR for 10 µg/L increment in selenium was 0.76 (95 % CI 0.60, 0.94), for one mg/L increment in SELENOP was 0.73 (0.56, 0.95), and for 10 U/L increment in GPx3 was 0.93 (0.87,1.00). Maternal total selenium was inversely associated with child ASD traits, OR per 10 µg/L increment was 0.85 (0.74, 0,98). SELENOP and GPx3 were not associated with ASD traits. The associations were specific to selenium, as other trace elements such as copper, zinc, or iron were not associated with the outcomes. CONCLUSIONS: The results provide coherent evidence for selenium deficiency as a risk factor for ADHD and ASD traits in an environment with borderline supply, the causality of which should be elucidated in a randomized controlled trial.

6.
Cell Death Dis ; 15(5): 332, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740744

ABSTRACT

Ovarian cancer (OV) poses a significant challenge in clinical settings due to its difficulty in early diagnosis and treatment resistance. FOXP4, belonging to the FOXP subfamily, plays a pivotal role in various biological processes including cancer, cell cycle regulation, and embryonic development. However, the specific role and importance of FOXP4 in OV have remained unclear. Our research showed that FOXP4 is highly expressed in OV tissues, with its elevated levels correlating with poor prognosis. We further explored FOXP4's function through RNA sequencing and functional analysis in FOXP4-deficient cells, revealing its critical role in activating the Wnt signaling pathway. This activation exacerbates the malignant phenotype in OV. Mechanistically, FOXP4 directly induces the expression of protein tyrosine kinase 7 (PTK7), a Wnt-binding receptor tyrosine pseudokinase, which causes abnormal activation of the Wnt signaling pathway. Disrupting the FOXP4-Wnt feedback loop by inactivating the Wnt signaling pathway or reducing FOXP4 expression resulted in the reduction of the malignant phenotype of OV cells, while restoring PTK7 expression reversed this effect. In conclusion, our findings underscore the significance of the FOXP4-induced Wnt pathway activation in OV, suggesting the therapeutic potential of targeting this pathway in OV treatment.


Subject(s)
Forkhead Transcription Factors , Ovarian Neoplasms , Receptor Protein-Tyrosine Kinases , Wnt Signaling Pathway , Humans , Female , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Receptor Protein-Tyrosine Kinases/genetics , Cell Line, Tumor , Animals , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules/genetics , beta Catenin/metabolism , Gene Expression Regulation, Neoplastic , Mice , Mice, Nude , Cell Proliferation
7.
Nano Lett ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743504

ABSTRACT

The fibrous extracellular matrix (ECM) is vital for tissue regeneration and impacts implanted device treatments. Previous research on fibrous biomaterials shows varying cellular reactions to surface orientation, often due to unclear interactions between surface topography and substrate elasticity. Our study addresses this gap by achieving the rapid creation of hydrogels with diverse fibrous topographies and varying substrate moduli through a surface printing strategy. Cells exhibit heightened traction force on nanopatterned soft hydrogels, particularly with randomly distributed patterns compared with regular soft hydrogels. Meanwhile, on stiff hydrogels featuring an aligned topography, optimal cellular mechanosensing is observed compared to random topography. Mechanistic investigations highlight that cellular force-sensing and adhesion are influenced by the interplay of pattern deformability and focal adhesion orientation, subsequently mediating stem cell differentiation. Our findings highlight the importance of combining substrate modulus and topography to guide cellular behavior in designing advanced tissue engineering biomaterials.

8.
Cancer Gene Ther ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750301

ABSTRACT

Immunosuppressive tumor microenvironment (TME) contributes to tumor progression and causes major obstacles for cancer therapy. Phosphoglycerate mutase 1 (PGAM1) is a key enzyme involved in cancer metabolism while its role in remodeling TME remains unclear. In this study, we reported that PGAM1 suppression in breast cancer (BC) cells led to a decrease in M2 polarization, migration, and interleukin-10 (IL-10) production of macrophages. PGAM1 regulation on CCL2 expression was essential to macrophage recruitment, which further mediated by activating JAK-STAT pathway. Additionally, the CCL2/CCR2 axis was observed to participate in PGAM1-mediated immunosuppression via regulating PD-1 expression in macrophages. Combined targeting of PGAM1 and the CCL2/CCR2 axis led to a reduction in tumor growth in vivo. Furthermore, clinical validation in BC tissues indicated a positive correlation between PGAM1, CCL2 and macrophage infiltration. Our study provides novel insights into the induction of immunosuppressive TME by PGAM1 and propose a new strategy for combination therapies targeting PGAM1 and macrophages in BC.

9.
medRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562892

ABSTRACT

COVID-19 has been a significant public health concern for the last four years; however, little is known about the mechanisms that lead to severe COVID-associated kidney injury. In this multicenter study, we combined quantitative deep urinary proteomics and machine learning to predict severe acute outcomes in hospitalized COVID-19 patients. Using a 10-fold cross-validated random forest algorithm, we identified a set of urinary proteins that demonstrated predictive power for both discovery and validation set with 87% and 79% accuracy, respectively. These predictive urinary biomarkers were recapitulated in non-COVID acute kidney injury revealing overlapping injury mechanisms. We further combined orthogonal multiomics datasets to understand the mechanisms that drive severe COVID-associated kidney injury. Functional overlap and network analysis of urinary proteomics, plasma proteomics and urine sediment single-cell RNA sequencing showed that extracellular matrix and autophagy-associated pathways were uniquely impacted in severe COVID-19. Differentially abundant proteins associated with these pathways exhibited high expression in cells in the juxtamedullary nephron, endothelial cells, and podocytes, indicating that these kidney cell types could be potential targets. Further, single-cell transcriptomic analysis of kidney organoids infected with SARS-CoV-2 revealed dysregulation of extracellular matrix organization in multiple nephron segments, recapitulating the clinically observed fibrotic response across multiomics datasets. Ligand-receptor interaction analysis of the podocyte and tubule organoid clusters showed significant reduction and loss of interaction between integrins and basement membrane receptors in the infected kidney organoids. Collectively, these data suggest that extracellular matrix degradation and adhesion-associated mechanisms could be a main driver of COVID-associated kidney injury and severe outcomes.

10.
Cancer ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578977

ABSTRACT

BACKGROUND: Tocilizumab is commonly used for the management of chimeric antigen receptor (CAR) T-cell therapy-associated cytokine release syndrome (CRS). However, it remains unknown whether tocilizumab or its dosage affects the efficacy and safety of CAR T-cell therapy. The objective of this multicenter retrospective study was to explore the impact of tocilizumab on CAR T-cell therapy. METHODS: In total, 93 patients with B-cell acute lymphoblastic leukemia (B-ALL) receiving humanized anti-CD19 CAR T cells were recruited from May 2016 to November 2022. Forty-five patients received tocilizumab (tocilizumab group), whereas 48 patients did not (nontocilizumab group). Thirteen patients received >1 dose of tocilizumab. The primary end point was the effect of tocilizumab on the efficacy and safety of CAR T cells. Additionally, proliferation, killing, and cytokine assays of CAR T cells were performed in vitro in the presence of tocilizumab. RESULTS: The median age of the patients was 33 years, with 47 males and 46 females. Patients in the tocilizumab group showed similar complete response (CR) rate, overall survival (OS), and event-free survival (EFS) compared with the nontocilizumab group. Compared with patients who received ≤1 dose of tocilizumab, receiving >1 dose of tocilizumab did not affect their CR rate, OS, or EFS. In the tocilizumab group, all patients experienced CRS and 26.7% experienced immune effector cell-associated neurotoxicity syndrome (ICANS). In the nontocilizumab group, 64.6% of patients experienced CRS and 8.3% experienced ICANS. Up to 75% of ICANS and 87.5% of grade ≥3 ICANS occurred in the tocilizumab group. In vitro, tocilizumab did not impair the proliferation and killing effects of CAR T cells. CONCLUSIONS: Tocilizumab does not affect the efficacy of CAR T cells but may increase the likelihood of ICANS.

11.
Anal Bioanal Chem ; 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613684

ABSTRACT

Electrochemiluminescence (ECL) is a luminescence production technique triggered by electrochemistry, which has emerged as a powerful analytical technique in bioanalysis and clinical diagnosis. During ECL, charge transfer (CT) is an important process between electrochemical excitation and luminescent emission, and dramatically affects the efficiency of exciton generation, playing a pivotal role in the light-emitting properties of nanomaterials. Reticular framework materials with intramolecular/intermolecular interactions offer a promising platform for regulating CT pathways and enhancing luminescence efficiency. Deciphering the role of intramolecular/intermolecular CT processes in reticular framework materials allows for the targeted design and synthesis of emitters with precisely controlled CT properties. This sheds light on the microscopic mechanisms of electro-optical conversion in ECL, propelling advancements in their efficiency and breakthrough applications. This mini-review focuses on recent advancements in engineering CT within reticular frameworks to boost ECL efficiency. We summarized strategies including intra-reticular charge transfer, CT between the metal and ligands, and CT between guest molecules and frameworks within reticular frameworks, which holds promise for developing next-generation ECL devices with enhanced sensitivity and light emission.

12.
J Neurosurg ; : 1-11, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38608304

ABSTRACT

OBJECTIVE: Circulating tumor cell (CTC) detection is a promising noninvasive technique that can be used to diagnose cancer, monitor progression, and predict prognosis. In this study, the authors aimed to investigate the clinical utility of CTCs in the management of diffuse glioma. METHODS: Sixty-three patients with newly diagnosed diffuse glioma were included in this multicenter clinical cohort. The authors used a platform based on isolation by size of epithelial tumor cells (ISET) to detect and analyze CTCs and circulating tumor microemboli (CTMs) in the peripheral blood of patients both before and after surgery. Least absolute shrinkage and selector operation (LASSO) and Cox regression analyses were used to verify whether CTCs and CTMs are independent prognostic factors for diffuse glioma. RESULTS: CTC levels were closely related to the degree of malignancy, WHO grade, and pathological subtypes. Receiver operating characteristic curve analysis revealed that a high CTC level was a predictor for glioblastoma. The results also showed that CTMs originate from the parental tumor rather than from the circulation and are an independent prognostic factor for diffuse glioma. The postoperative CTC level is related to the peripheral immune system and patient survival. Cox regression analysis showed that postoperative CTC levels and CTM status are independent prognostic factors for diffuse glioma, and CTC- and CTM-based survival models had high accuracy in internal validation. CONCLUSIONS: The authors revealed a correlation between CTCs and clinical characteristics and demonstrated that CTCs and CTMs are independent predictors for the diagnosis and prognosis of diffuse glioma. Their CTC- and CTM-based survival models can enable clinicians to evaluate patients' response to surgery as well as their outcomes.

13.
J Cereb Blood Flow Metab ; : 271678X241230188, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38639025

ABSTRACT

Accumulating evidence shows that most chronic neurological diseases have a link with sleep disturbances, and that patients with chronically poor sleep undergo an accelerated cognitive decline. Indeed, a single-night of sleep deprivation may increase metabolic waste levels in cerebrospinal fluid. However, it remains unknown how chronic sleep disturbances in isolation from an underlying neurological disease may affect the glymphatic system. Clearance of brain interstitial waste by the glymphatic system occurs primarily during sleep, driven by multiple oscillators including arterial pulsatility, and vasomotion. Herein, we induced sleep fragmentation in young wildtype mice and assessed the effects on glymphatic activity and cognitive functions. Chronic sleep fragmentation reduced glymphatic function and impaired cognitive functions in healthy mice. A mechanistic analysis showed that the chronic sleep fragmentation suppressed slow vasomotion, without altering cardiac-driven pulsations. Taken together, results of this study document that chronic sleep fragmentation suppresses brain metabolite clearance and impairs cognition, even in the absence of disease.

14.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585867

ABSTRACT

Persistence reinforces continuous action, which benefits animals in many aspects. Diverse information may trigger animals to start a persistent movement. However, it is unclear how the brain decides to persist with current actions by selecting specific information. Using single-unit extracellular recordings and opto-tagging in awake mice, we demonstrated that a group of dorsal mPFC (dmPFC) motor cortex projecting (MP) neurons initiate a persistent movement selectively encoding contextual information rather than natural valence. Inactivation of dmPFC MP neurons impairs the initiation and reduces neuronal activity in the insular and motor cortex. Finally, a computational model suggests that a successive sensory stimulus acts as an input signal for the dmPFC MP neurons to initiate a persistent movement. These results reveal a neural initiation mechanism on the persistent movement.

15.
World J Gastrointest Oncol ; 16(3): 1046-1058, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38577462

ABSTRACT

BACKGROUND: Gastric cancer (GC) is the fifth most commonly diagnosed malignancy worldwide, with over 1 million new cases per year, and the third leading cause of cancer-related death. AIM: To determine the optimal perioperative treatment regimen for patients with locally resectable GC. METHODS: A comprehensive literature search was conducted, focusing on phase II/III randomized controlled trials (RCTs) assessing perioperative chemotherapy and chemoradiotherapy in treating locally resectable GC. The R0 resection rate, overall survival (OS), disease-free survival (DFS), and incidence of grade 3 or higher nonsurgical severe adverse events (SAEs) associated with various perioperative regimens were analyzed. A Bayesian network meta-analysis was performed to compare treatment regimens and rank their efficacy. RESULTS: Thirty RCTs involving 8346 patients were included in this study. Neoadjuvant XELOX plus neoadjuvant radiotherapy and neoadjuvant CF were found to significantly improve the R0 resection rate compared with surgery alone, and the former had the highest probability of being the most effective option in this context. Neoadjuvant plus adjuvant FLOT was associated with the highest probability of being the best regimen for improving OS. Owing to limited data, no definitive ranking could be determined for DFS. Considering nonsurgical SAEs, FLO has emerged as the safest treatment regimen. CONCLUSION: This study provides valuable insights for clinicians when selecting perioperative treatment regimens for patients with locally resectable GC. Further studies are required to validate these findings.

16.
Nano Lett ; 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38568013

ABSTRACT

Metalenses are typically designed for a fixed focal length, restricting their functionality to static scenarios. Various methods have been introduced to achieve the zoom function in metalenses. These methods, however, have a very limited zoom range, or they require additional lenses to achieve direct imaging. Here, we demonstrate a zoom metalens based on axial movement that performs both the imaging and the zoom function. The key innovation is the use of a polynomial phase profile that mimics an aspheric lens, which allows an extended depth of focus, enabling a large zoom range. Experimental results show that this focal length variation, combined with the extended depth of focus, translates into an impressive zoom range of 11.9× while maintaining good imaging quality. We see applications for such a zoom metalens in surveillance cameras of drones or microrobots to reduce their weight and volume, thus enabling more flexible application scenarios.

17.
Nutr Hosp ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38666338

ABSTRACT

INTRODUCTION: to explore the effect of individualized nutritional intervention on the nutritional status of patients with liver cancer after transcatheter arterial chemoembolization (TACE). METHODS: 56 patients who underwent TACE in our hospital from March 2022 to March 2023 were selected as the study subjects. The patients were randomly divided into a control group (28 cases) and an intervention group (28 cases). The control group received routine dietary intervention, while the intervention group received individualized nutritional intervention. We analyzed the body mass index (BMI), nutritional risk screening 2002 (NRS 2002), nutritional status, liver function status, and incidence of complications in two groups of patients before TACE, 3 days after TACE, and 1 month after TACE. RESULTS: on the third day after TACE, the nutritional related indicators of both groups of patients showed a significantly decrease compared to those before TACE (p < 0.05), while the majority of liver function indicators significantly increased (p < 0.05). Compared with those at 3 days after TACE, the nutritional status of the intervention group patients significantly improved (p < 0.05) and liver function indicators significantly decreased (p < 0.05) 1 month after TACE. 1 month after TACE, all nutritional indicators in the intervention group were significantly higher than those in the control group (p < 0.05), and AST was significantly lower than that in the control group (p < 0.05). The incidence of gastrointestinal complications and electrolyte disorders in the intervention group were significantly lower than that in the control group (p < 0.05). Conclusion Individualized nutritional intervention can effectively improve nutritional status, improve liver function, and reduce the incidence of postoperative complications in liver cancer patients after TACE. It was worth promoting.

18.
Int J Geriatr Psychiatry ; 39(5): e6088, 2024 May.
Article in English | MEDLINE | ID: mdl-38666751

ABSTRACT

OBJECTIVES: This study investigates the impact of pension on depressive symptoms among Chinese older adults. Additional effort is made to test the mediating effect of multidimensional downward intergenerational support and the moderating effect of age on this relationship. METHODS: A total of 1828 Chinese older community-dwellers who met our inclusion criteria are drawn from the 2018 China Health and Retirement Longitudinal Study. Multivariate regression modeling is applied to analyze the effect of pensions on depressive symptoms of older adults. Additionally, bootstrap method with resampling strategies is used to estimate the mediating effect of three dimensions of downward intergenerational support (instrumental, emotional, and financial support). Further, Johnson-Neyman technique is employed to analysis and visualize the moderating effect of age. RESULTS: The findings reveal a significant inverse relationship between pension levels and depressive symptoms (B = -6.664, SE = 2.826, p < 0.05). The analysis shows that downward intergenerational emotional support (B = -0.195, Boot SE = 0.103, 95% Boot CI [-0.404, -0.003]) serves as a partial mediator in this relationship. Furthermore, the results highlight the moderating role of age in the linkage between pension and depressive symptoms (B = 0.065, SE = 0.039, p < 0.1). DISCUSSION: This investigation is pioneering in simultaneously assessing the mediating role of multidimensional downward intergenerational support and the moderating effect of age in the context of pension and depressive symptoms. The study underscores the necessity of an interdisciplinary approach in devising comprehensive intervention strategies. These should encompass pension policy consultation, respite services, and other crucial elements aimed at mitigating the severity or reducing the risk of depressive symptoms among the older adults.


Subject(s)
Depression , Pensions , Humans , Female , Male , Aged , Pensions/statistics & numerical data , China/epidemiology , Depression/psychology , Longitudinal Studies , Middle Aged , Intergenerational Relations , Aged, 80 and over , Social Support , East Asian People
19.
Ecotoxicol Environ Saf ; 276: 116295, 2024 May.
Article in English | MEDLINE | ID: mdl-38581908

ABSTRACT

Leukemia caused by environmental chemical pollutants has attracted great attention, the malignant leukemic transformation model of TK6 cells induced by hydroquinone (HQ) has been previously found in our team. However, the type of leukemia corresponding to this malignant transformed cell line model needs further study and interpretation. Furthermore, the molecular mechanism of malignant proliferation of leukemic cells induced by HQ remains unclear. This study is the first to reveal the expression of aberrant genes in leukemic cells of HQ-induced malignant transformation, which may correspond to chronic lymphocytic leukemia (CLL). The expression of Linc01588, a long non-coding RNA (lncRNA), was significantly up-regulated in CLL patients and leukemic cell line model which previously described. After gain-of-function assays and loss-of-function assays, feeble cell viability, severe apoptotic phenotype and the increased secretion of TNF-α were easily observed in malignant leukemic TK6 cells with Linc01588 deletion after HQ intervention. The tumors derived from malignant TK6 cells with Linc01588 deletion inoculated subcutaneously in nude mice were smaller than controls. In CLL and its cell line model, the expression of Linc01588 and miR-9-5p, miR-9-5p and SIRT1 were negative correlation respectively in CLL and cell line model, while the expression of Linc01588 and SIRT1 were positive correlation. The dual-luciferase reporter assay showed that Linc01588 & miR-9-5p, miR-9-5p & SIRT1 could bind directly, respectively. Furthermore, knockdown of miR-9-5p successfully rescued the severe apoptotic phenotype and the increased secretion of TNF-α caused by the Linc01588 deletion, the deletion of Linc01588 in human CLL cell line MEC-2 could also inhibit malignant biological characteristics, and the phenotype caused by the deletion of Linc01588 could also be rescued after overexpression of SIRT1. Moreover, the regulation of SIRT1 expression in HQ19 cells by Linc01588 and miR-9-5 P may be related to the Akt/NF-κB pathway. In brief, Linc01588 deletion inhibits the malignant biological characteristics of HQ-induced leukemic cells via miR-9-5p/SIRT1, and it is a novel and hopeful clue for the clinical targeted therapy of CLL.


Subject(s)
Hydroquinones , Leukemia, Lymphocytic, Chronic, B-Cell , Mice, Nude , MicroRNAs , RNA, Long Noncoding , Sirtuin 1 , Sirtuin 1/genetics , Sirtuin 1/metabolism , MicroRNAs/genetics , Hydroquinones/toxicity , Humans , RNA, Long Noncoding/genetics , Animals , Cell Line, Tumor , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mice , Apoptosis/drug effects , Female , Male , Cell Proliferation/drug effects
20.
Sci Total Environ ; 930: 172802, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38679093

ABSTRACT

In situ measurement of the bioavailability of organic pollutants in soil is crucial for understanding their environmental behavior and assessing health risks. Due to the high heterogeneity of soil, microscale determination is crucial for achieving high accuracy, but few methods are available. In this study, microsized probes coated with polydimethylsiloxane (PDMS) were used to measure the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in soil in situ. The concentrations of PAHs enriched by the PDMS-coated probes correlated well with the results of bioassays using earthworms (R2 = 0.92-0.99) and ryegrass roots (R2 = 0.92-0.99). Compared with other chemical extraction methods, such as n-butanol extraction, the proposed method has advantages such as in situ operation, microvolume analysis, and negligible interference to the soil environment. In the soil rhizosphere zone, PAHs bioavailability decreased in the following order: rhizosphere > near-rhizosphere > far-rhizosphere. The bioavailability of PAHs in soil amended with biochar was also successfully characterized by the proposed method. Thus, this study developed an in situ and microscale method to predict the bioavailability of organic pollutants in contaminated soils and provides new insight into migration and transformation processes in rhizosphere soil.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Rhizosphere , Soil Pollutants , Soil , Solid Phase Microextraction , Polycyclic Aromatic Hydrocarbons/analysis , Soil Pollutants/analysis , Solid Phase Microextraction/methods , Soil/chemistry , Environmental Monitoring/methods , Biological Availability , Animals , Lolium , Oligochaeta
SELECTION OF CITATIONS
SEARCH DETAIL
...