Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Mol Cancer Ther ; 23(3): 285-300, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38102750

ABSTRACT

The estrogen receptor (ER) is a well-established target for the treatment of breast cancer, with the majority of patients presenting as ER-positive (ER+). Endocrine therapy is a mainstay of breast cancer treatment but the development of resistance mutations in response to aromatase inhibitors, poor pharmacokinetic properties of fulvestrant, agonist activity of tamoxifen, and limited benefit for elacestrant leave unmet needs for patients with or without resistance mutations in ESR1, the gene that encodes the ER protein. Here we describe palazestrant (OP-1250), a novel, orally bioavailable complete ER antagonist and selective ER degrader. OP-1250, like fulvestrant, has no agonist activity on the ER and completely blocks estrogen-induced transcriptional activity. In addition, OP-1250 demonstrates favorable biochemical binding affinity, ER degradation, and antiproliferative activity in ER+ breast cancer models that is comparable or superior to other agents of interest. OP-1250 has superior pharmacokinetic properties relative to fulvestrant, including oral bioavailability and brain penetrance, as well as superior performance in wild-type and ESR1-mutant breast cancer xenograft studies. OP-1250 combines well with cyclin-dependent kinase 4 and 6 inhibitors in xenograft studies of ER+ breast cancer models and effectively shrinks intracranially implanted tumors, resulting in prolonged animal survival. With demonstrated preclinical efficacy exceeding fulvestrant in wild-type models, elacestrant in ESR1-mutant models, and tamoxifen in intracranial xenografts, OP-1250 has the potential to benefit patients with ER+ breast cancer.


Subject(s)
Breast Neoplasms , Tetrahydronaphthalenes , Animals , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Fulvestrant/pharmacology , Fulvestrant/therapeutic use , Estrogen Receptor Antagonists/therapeutic use , Xenograft Model Antitumor Assays , Tamoxifen , Estrogens , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism
2.
Dis Model Mech ; 13(8)2020 08 27.
Article in English | MEDLINE | ID: mdl-32737261

ABSTRACT

Nonsense-mediated mRNA decay (NMD) targets mRNAs that contain a premature termination codon (PTC) for degradation, preventing their translation. By altering the expression of PTC-containing mRNAs, NMD modulates the inheritance pattern and severity of genetic diseases. NMD also limits the efficiency of suppressing translation termination at PTCs, an emerging therapeutic approach to treat genetic diseases caused by in-frame PTCs (nonsense mutations). Inhibiting NMD may help rescue partial levels of protein expression. However, it is unclear whether long-term, global NMD attenuation is safe. We hypothesize that a degree of NMD inhibition can be safely tolerated after completion of prenatal development. To test this hypothesis, we generated a novel transgenic mouse that expresses an inducible, dominant-negative form of human UPF1 (dnUPF1) to inhibit NMD in mouse tissues by different degrees, allowing us to examine the effects of global NMD inhibition in vivo A thorough characterization of these mice indicated that expressing dnUPF1 at levels that promote relatively moderate to strong NMD inhibition in most tissues for a 1-month period produced modest immunological and bone alterations. In contrast, 1 month of dnUPF1 expression to promote more modest NMD inhibition in most tissues did not produce any discernable defects, indicating that moderate global NMD attenuation is generally well tolerated in non-neurological somatic tissues. Importantly, a modest level of NMD inhibition that produced no overt abnormalities was able to significantly enhance in vivo PTC suppression. These results suggest that safe levels of NMD attenuation are likely achievable, and this can help rescue protein deficiencies resulting from PTCs.


Subject(s)
Codon, Nonsense , Genetic Diseases, Inborn/therapy , Genetic Therapy , Neurons/metabolism , Nonsense Mediated mRNA Decay , RNA Helicases/metabolism , Trans-Activators/metabolism , Age Factors , Animals , Female , Gene Expression Regulation, Developmental , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Genotype , Male , Mice, Inbred C57BL , Mice, Transgenic , Neurons/pathology , Phenotype , RNA Helicases/genetics , Trans-Activators/genetics
3.
Toxicol Sci ; 155(2): 474-484, 2017 02.
Article in English | MEDLINE | ID: mdl-27837169

ABSTRACT

Ozone-induced lung injury is associated with an accumulation of activated macrophages in the lung. Chemokine receptor CCR2 mediates the migration of inflammatory monocytes/macrophages to sites of tissue injury. It is also required for monocyte egress from the bone marrow. In the present studies, we analyzed the role of CCR2 in inflammatory cell trafficking to the lung in response to ozone. Treatment of mice with ozone (0.8 ppm, 3 h) resulted in increases in proinflammatory CCR2+ macrophages in the lung at 24 h, as well as proinflammatory CD11b + Ly6CHi and iNOS+ macrophages at 24 and 48 h. Mannose receptor+ anti-inflammatory macrophages were also observed in the lung 24 and 48 h post-ozone. Loss of CCR2 was associated with reduced numbers of proinflammatory macrophages in the lung and decreased expression of the proinflammatory cytokines, IL-1ß and TNFα. Decreases in anti-inflammatory CD11b + Ly6CLo macrophages were also observed in lungs of CCR2-/- mice treated with ozone, whereas mannose receptor+ macrophage accumulation was delayed; conversely, CX3CL1 and CX3CR1 were upregulated. Changes in lung macrophage subpopulations and inflammatory gene expression in CCR2-/- mice were correlated with reduced ozone toxicity and oxidative stress, as measured by decreases in bronchoalveolar lavage protein content and reduced lung expression of heme-oxygenase-1, 4-hydroxynonenal and cytochrome b5. These data demonstrate that CCR2 plays a role in both pro- and anti-inflammatory macrophage accumulation in the lung following ozone exposure. The fact that ozone-induced lung injury and oxidative stress are reduced in CCR2-/- mice suggests more prominent effects on proinflammatory macrophages.


Subject(s)
Inflammation/pathology , Lung/drug effects , Ozone/toxicity , Receptors, CCR2/physiology , Animals , Bronchoalveolar Lavage Fluid , Female , Flow Cytometry , Lung/pathology , Mice , Mice, Inbred C57BL , Real-Time Polymerase Chain Reaction
4.
Toxicol Sci ; 155(1): 182-195, 2017 01.
Article in English | MEDLINE | ID: mdl-27708193

ABSTRACT

Macrophages and inflammatory mediators have been implicated in ozone toxicity. In these studies, we used splenectomized (SPX) mice to assess the contribution of splenic monocytes to pulmonary inflammation and injury induced by ozone. Cells and tissue were collected 24-72 h after exposure of mice to air or ozone (0.8 ppm, 3 h). Following ozone exposure, increased numbers of pro-inflammatory CD11b + Ly6CHi and anti-inflammatory CD11b + Ly6CLo monocytes were observed in spleens of control (CTL) mice. CD11b + Ly6CHi and MMP-9+ pro-inflammatory macrophages were also observed in lungs of CTL mice after ozone, along with CD11b + Ly6CLo and mannose receptor (MR)+ anti-inflammatory macrophages. This was accompanied by increased lung expression of proteins involved in monocyte/macrophage trafficking including CCL3, CCL4, CCR1, and AT1R. Splenectomy resulted in decreases in pro-inflammatory macrophages in the lung and down regulation of CCR2, CCL2, and CCL4, but increases in CD11b + Ly6CLo anti-inflammatory macrophages. CD11b+Ly6G+Ly6C+ granulocytic (G)- and monocytic (M)-myeloid derived suppressor cells (MDSC)s were also detected in the lungs and spleens of CTL mice; these increased after ozone exposure. Splenectomy was associated with a decrease in G-MDSCs in the lung, with no effect on M-MDSCs. Changes in lung macrophage subpopulations and MDSCs in SPX mice were correlated with reduced ozone toxicity, as measured by decreases in bronchoalveolar lavage protein content and reduced 4-hydroxynonenal expression in the lung. These data suggest that the spleen is a source of pro-inflammatory/cytotoxic macrophages that contribute to ozone-induced lung injury, inflammation, and oxidative stress.


Subject(s)
Lung/drug effects , Macrophages/physiology , Ozone/toxicity , Pneumonia/pathology , Spleen/pathology , Animals , Blotting, Western , Bronchoalveolar Lavage Fluid , Chemokines/metabolism , Lung/pathology , Macrophages/pathology , Mice , Real-Time Polymerase Chain Reaction , Spleen/surgery , Splenectomy
5.
Sci Rep ; 6: 32620, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27600905

ABSTRACT

The nucleation mechanisms during solution deposition of organic semiconductor thin films determine the grain morphology and may influence the crystalline packing in some cases. Here, in-situ optical spectromicroscopy in reflection mode is used to study the growth mechanisms and thermal stability of 6,13-bis(trisopropylsilylethynyl)-pentacene thin films. The results show that the films form in a supersaturated state before transforming to a solid film. Molecular aggregates corresponding to subcritical nuclei in the crystallization process are inferred from optical spectroscopy measurements of the supersaturated region. Strain-free solid films exhibit a temperature-dependent blue shift of optical absorption peaks due to a continuous thermally driven change of the crystalline packing. As crystalline films are cooled to ambient temperature they become strained although cracking of thicker films is observed, which allows the strain to partially relax. Below a critical thickness, cracking is not observed and grazing incidence X-ray diffraction measurements confirm that the thinnest films are constrained to the lattice constants corresponding to the temperature at which they were deposited. Optical spectroscopy results show that the transition temperature between Form I (room temperature phase) and Form II (high temperature phase) depends on the film thickness, and that Form I can also be strain-stabilized up to 135 °C.


Subject(s)
Naphthacenes/chemistry , Semiconductors , Crystallization , Glass/chemistry , Microscopy , Optical Imaging , Spectrum Analysis , Thermodynamics , X-Ray Diffraction
6.
Pediatr Dermatol ; 33(5): 493-500, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27396436

ABSTRACT

BACKGROUND: Neonatal mortality is much higher in the developing world than in developed countries. Infections are a major cause of neonatal death, particularly in preterm infants, in whom defective epidermal permeability barrier function facilitates transcutaneous pathogen invasion. The objective was to determine whether neonatal skin care products commonly used in Africa benefit or compromise epidermal functions in murine skin. METHODS: After twice-daily treatment of 6- to 8-week-old hairless mice with each skin care product for 3 days, epidermal permeability barrier function, skin surface pH, stratum corneum hydration, and barrier recovery were measured using a multiprobe adapter system physiology monitor. For products showing some benefits in these initial tests, the epidermal permeability barrier homeostasis was assessed 1 and 5 hours after a single application to acutely disrupted skin. RESULTS: All of the skin care products compromised basal permeability barrier function and barrier repair kinetics. Moreover, after 3 days of treatment, most of the products also reduced stratum corneum hydration while elevating skin surface pH to abnormal levels. CONCLUSION: Some neonatal skin care products that are widely used in Africa perturb important epidermal functions, including permeability barrier homeostasis in mice. Should these products have similar effects on newborn human skin, they could cause a defective epidermal permeability barrier, which can increase body fluid loss, impair thermoregulation, and contribute to the high rates of neonatal morbidity and mortality seen in Africa. Accordingly, alternative products that enhance permeability barrier function should be identified, particularly for use in preterm infants.


Subject(s)
Dermatologic Agents/adverse effects , Epidermis/physiology , Skin Absorption/drug effects , Skin Care/methods , Animals , Animals, Newborn , Dermatologic Agents/pharmacology , Epidermis/drug effects , Humans , Medicine, African Traditional , Mice , Mice, Hairless , Models, Animal , Ointments/adverse effects , Ointments/pharmacology , Skin Absorption/physiology , United Kingdom
7.
Toxicol Appl Pharmacol ; 304: 110-20, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27163765

ABSTRACT

Macrophages have been shown to play a role in acetaminophen (APAP)-induced hepatotoxicity, contributing to both pro- and anti-inflammatory processes. In these studies, we analyzed the role of the spleen as an extramedullary source of hepatic macrophages. APAP administration (300mg/kg, i.p.) to control mice resulted in an increase in CD11b(+) infiltrating Ly6G(+) granulocytic and Ly6G(-) monocytic cells in the spleen and the liver. The majority of the Ly6G(+) cells were also positive for the monocyte/macrophage activation marker, Ly6C, suggesting a myeloid derived suppressor cell (MDSC) phenotype. By comparison, Ly6G(-) cells consisted of 3 subpopulations expressing high, intermediate, and low levels of Ly6C. Splenectomy was associated with increases in mature (F4/80(+)) and immature (F4/80(-)) pro-inflammatory Ly6C(hi) macrophages and mature anti-inflammatory (Ly6C(lo)) macrophages in the liver after APAP; increases in MDSCs were also noted in the livers of splenectomized (SPX) mice after APAP. This was associated with increases in APAP-induced expression of chemokine receptors regulating pro-inflammatory (CCR2) and anti-inflammatory (CX3CR1) macrophage trafficking. In contrast, APAP-induced increases in pro-inflammatory galectin-3(+) macrophages were blunted in livers of SPX mice relative to control mice, along with hepatic expression of TNF-α, as well as the anti-inflammatory macrophage markers, FIZZ-1 and YM-1. These data demonstrate that multiple subpopulations of pro- and anti-inflammatory cells respond to APAP-induced injury, and that these cells originate from distinct hematopoietic reservoirs.


Subject(s)
Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/physiopathology , Inflammation Mediators/metabolism , Myeloid Cells/drug effects , Spleen/metabolism , Animals , CX3C Chemokine Receptor 1 , Chemokines/biosynthesis , Galectin 3/metabolism , Macrophage Activation/drug effects , Male , Mice , Mice, Inbred C57BL , Microsomes, Liver/drug effects , Phenotype , Receptors, CCR2/biosynthesis , Receptors, Chemokine/biosynthesis , Splenectomy
8.
Tissue Eng Part C Methods ; 21(1): 15-22, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24803151

ABSTRACT

Multilayered human keratinocyte cultures increasingly are used to model human epidermis. Until now, studies utilizing human epidermal equivalents (HEEs) have been limited because previous preparations do not establish a normal epidermal permeability barrier. In this report, we show that reducing environmental humidity to 50% relative humidity yields HEEs that closely match human postnatal epidermis and have enhanced repair of the permeability barrier. These cultures display low transepidermal water loss and possess a calcium and pH gradient that resembles those seen in human epidermis. These cultures upregulate glucosylceramide synthase and make normal-appearing lipid lamellar bilayers. The epidermal permeability barrier of these cultures can be perturbed, using the identical tools previously described for human skin, and recover in the same time course seen during in vivo barrier recovery. These cultures will be useful for basic and applied studies on epidermal barrier function.


Subject(s)
Epidermis/growth & development , Epidermis/physiology , Humidity , Cells, Cultured , Epidermal Cells , Epidermis/ultrastructure , Gene Expression Regulation , Humans , Infant, Newborn , Ions , Male , Proteins/metabolism
9.
Exp Dermatol ; 23(9): 645-51, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24980072

ABSTRACT

Systemic and topical glucocorticoids (GC) can cause significant adverse effects not only on the dermis, but also on epidermal structure and function. In epidermis, a striking GC-induced alteration in permeability barrier function occurs that can be attributed to an inhibition of epidermal mitogenesis, differentiation and lipid production. As prior studies in normal hairless mice demonstrated that topical applications of a flavonoid ingredient found in citrus, hesperidin, improve epidermal barrier function by stimulating epidermal proliferation and differentiation, we assessed here whether its topical applications could prevent GC-induced changes in epidermal function in murine skin and the basis for such effects. When hairless mice were co-treated topically with GC and 2% hesperidin twice-daily for 9 days, hesperidin co-applications prevented the expected GC-induced impairments of epidermal permeability barrier homoeostasis and stratum corneum (SC) acidification. These preventive effects could be attributed to a significant increase in filaggrin expression, enhanced epidermal ß-glucocerebrosidase activity and accelerated lamellar bilayer maturation, the last two likely attributable to a hesperidin-induced reduction in stratum corneum pH. Furthermore, co-applications of hesperidin with GC largely prevented the expected GC-induced inhibition of epidermal proliferation. Finally, topical hesperidin increased epidermal glutathione reductase mRNA expression, which could counteract multiple functional negative effects of GC on epidermis. Together, these results show that topical hesperidin prevents GC-induced epidermal side effects by divergent mechanisms.


Subject(s)
Clobetasol/adverse effects , Clobetasol/antagonists & inhibitors , Epidermis/drug effects , Glucocorticoids/adverse effects , Glucocorticoids/antagonists & inhibitors , Hesperidin/administration & dosage , Administration, Topical , Animals , Cell Proliferation/drug effects , Clobetasol/administration & dosage , Epidermis/pathology , Epidermis/physiopathology , Female , Filaggrin Proteins , Glucocorticoids/administration & dosage , Glutathione Reductase/genetics , Intermediate Filament Proteins/genetics , Lipid Metabolism/drug effects , Mice , Mice, Hairless , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism , Up-Regulation/drug effects
10.
Stem Cell Reports ; 2(5): 675-89, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24936454

ABSTRACT

Cornification and epidermal barrier defects are associated with a number of clinically diverse skin disorders. However, a suitable in vitro model for studying normal barrier function and barrier defects is still lacking. Here, we demonstrate the generation of human epidermal equivalents (HEEs) from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). HEEs are structurally similar to native epidermis, with a functional permeability barrier. We exposed a pure population of hESC/iPSC-derived keratinocytes, whose transcriptome corresponds to the gene signature of normal primary human keratinocytes (NHKs), to a sequential high-to-low humidity environment in an air/liquid interface culture. The resulting HEEs had all of the cellular strata of the human epidermis, with skin barrier properties similar to those of normal skin. Such HEEs generated from disease-specific iPSCs will be an invaluable tool not only for dissecting molecular mechanisms that lead to epidermal barrier defects but also for drug development and screening.


Subject(s)
Embryonic Stem Cells/metabolism , Epidermis/metabolism , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Cell Culture Techniques , Cell Differentiation , Cells, Cultured , Cellular Reprogramming , DNA Methylation , Embryonic Stem Cells/cytology , Epithelial-Mesenchymal Transition , Humans , Induced Pluripotent Stem Cells/cytology , Keratin-14/genetics , Keratin-14/metabolism , Keratinocytes/cytology , Keratinocytes/metabolism , Permeability , Principal Component Analysis , Teratoma/pathology , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
11.
J Invest Dermatol ; 134(9): 2399-2407, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24732399

ABSTRACT

Humans with darkly pigmented skin display superior permeability barrier function in comparison with humans with lightly pigmented skin. The reduced pH of the stratum corneum (SC) of darkly pigmented skin could account for enhanced function, because acidifying lightly pigmented human SC resets barrier function to darkly pigmented levels. In SKH1 (nonpigmented) versus SKH2/J (pigmented) hairless mice, we evaluated how a pigment-dependent reduction in pH could influence epidermal barrier function. Permeability barrier homeostasis is enhanced in SKH2/J versus SKH1 mice, correlating with a reduced pH in the lower SC that colocalizes with the extrusion of melanin granules. Darkly pigmented human epidermis also shows substantial melanin extrusion in the outer epidermis. Both acute barrier disruption and topical basic pH challenges accelerate reacidification of SKH2/J (but not SKH1) SC, while inducing melanin extrusion. SKH2/J mice also display enhanced expression of the SC acidifying enzyme, secretory phospholipase A2f (sPLA2f). Enhanced barrier function of SKH2/J mice could be attributed to enhanced activity of two acidic pH-dependent, ceramide-generating enzymes, ß-glucocerebrosidase and acidic sphingomyelinase, leading to accelerated maturation of SC lamellar bilayers. Finally, organotypic cultures of darkly pigmented human keratinocytes display enhanced barrier function in comparison with lightly pigmented cultures. Together, these results suggest that the superior barrier function of pigmented epidermis can be largely attributed to the pH-lowering impact of melanin persistence/extrusion and enhanced sPLA2f expression.


Subject(s)
Acids/metabolism , Epidermis/metabolism , Group II Phospholipases A2/metabolism , Homeostasis/genetics , Melanocytes/metabolism , Skin Pigmentation/physiology , Animals , Ceramides/biosynthesis , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/ultrastructure , Epidermal Cells , Female , Glucosylceramidase/metabolism , Humans , Hydrogen-Ion Concentration , Keratinocytes/metabolism , Lipid Bilayers/metabolism , Male , Melanins/metabolism , Melanocytes/ultrastructure , Mice, Hairless , Microscopy, Electron , Organ Culture Techniques , Paracrine Communication/physiology , Permeability , Sphingomyelin Phosphodiesterase/metabolism
12.
Exp Dermatol ; 22(3): 210-5, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23489424

ABSTRACT

The beneficial effects of certain herbal medicines on cutaneous function have been appreciated for centuries. Among these agents, chrysanthemum extract, apigenin, has been used for skin care, particularly in China, for millennia. However, the underlying mechanisms by which apigenin benefits the skin are not known. In this study, we first determined whether topical apigenin positively influences permeability barrier homoeostasis, and then the basis thereof. Hairless mice were treated topically with either 0.1% apigenin or vehicle alone twice daily for 9 days. At the end of the treatments, permeability barrier function was assessed with either an electrolytic water analyzer or a Tewameter. Our results show that topical apigenin significantly enhanced permeability barrier homoeostasis after tape stripping, although basal permeability barrier function remained unchanged. Improved barrier function correlated with enhanced filaggrin expression and lamellar body production, which was paralleled by elevated mRNA levels for the epidermal ABCA12. The mRNA levels for key lipid synthetic enzymes also were upregulated by apigenin. Finally, both cathelicidin-related peptide and mouse beta-defensin 3 immunostaining were increased by apigenin. We conclude that topical apigenin improves epidermal permeability barrier function by stimulating epidermal differentiation, lipid synthesis and secretion, as well as cutaneous antimicrobial peptide production. Apigenin could be useful for the prevention and treatment of skin disorders characterized by permeability barrier dysfunction, associated with reduced filaggrin levels and impaired antimicrobial defenses, such as atopic dermatitis.


Subject(s)
Apigenin/administration & dosage , Apigenin/pharmacology , Cell Membrane Permeability/drug effects , Epidermis/physiology , Homeostasis/drug effects , Plant Extracts/administration & dosage , Plant Extracts/pharmacology , ATP-Binding Cassette Transporters/metabolism , Administration, Topical , Animals , Antimicrobial Cationic Peptides/metabolism , Cell Differentiation/drug effects , Cell Differentiation/physiology , Cell Membrane Permeability/physiology , Cells, Cultured , Chrysanthemum , Dose-Response Relationship, Drug , Epidermal Cells , Epidermis/drug effects , Female , Filaggrin Proteins , Homeostasis/physiology , Intermediate Filament Proteins/metabolism , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/metabolism , Mice , Mice, Hairless , Models, Animal , Skin/cytology , Skin/drug effects , Skin/metabolism , beta-Defensins/metabolism , Cathelicidins
13.
J Immunol ; 189(12): 5934-41, 2012 Dec 15.
Article in English | MEDLINE | ID: mdl-23175698

ABSTRACT

Inflammatory macrophages have been implicated in hepatotoxicity induced by the analgesic acetaminophen (APAP). In these studies, we characterized the phenotype of macrophages accumulating in the liver following APAP intoxication and evaluated the role of galectin-3 (Gal-3) in macrophage activation. Administration of APAP (300 mg/kg, i.p.) to wild-type mice resulted in the appearance of two distinct subpopulations of CD11b(+) cells in the liver, which expressed high or low levels of the monocyte/macrophage activation marker Ly6C. Whereas CD11b(+)/Ly6C(hi) macrophages exhibited a classically activated proinflammatory phenotype characterized by increased expression of TNF-α, inducible NO synthase, and CCR2, CD11b(+)/Ly6C(lo) macrophages were alternatively activated, expressing high levels of the anti-inflammatory cytokine IL-10. APAP intoxication was also associated with an accumulation of Gal-3(+) macrophages in the liver; the majority of these cells were Ly6C(hi). APAP-induced increases in CD11b(+)/Ly6C(hi) macrophages were significantly reduced in Gal-3(-/-) mice. This reduction was evident 72 h post APAP and was correlated with decreased expression of the classical macrophage activation markers, inducible NO synthase, IL-12, and TNF-α, as well as the proinflammatory chemokines CCL2 and CCL3, and chemokine receptors CCR1 and CCR2. Conversely, numbers of CD11b(+)/Ly6C(lo) macrophages increased in livers of APAP-treated Gal-3(-/-) mice; this was associated with increased expression of the alternative macrophage activation markers Ym1 and Fizz1, increased liver repair, and reduced hepatotoxicity. These data demonstrate that both classically and alternatively activated macrophages accumulate in the liver following APAP intoxication; moreover, Gal-3 plays a role in promoting a persistent proinflammatory macrophage phenotype.


Subject(s)
Acetaminophen/toxicity , Galectin 3/physiology , Inflammation Mediators/toxicity , Liver/immunology , Liver/pathology , Macrophage Activation/immunology , Acetaminophen/administration & dosage , Analgesics/administration & dosage , Analgesics/toxicity , Animals , Galectin 3/deficiency , Galectin 3/genetics , Immunophenotyping , Liver/drug effects , Macrophage Activation/drug effects , Macrophage Activation/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Random Allocation
14.
Toxicol Sci ; 127(2): 609-19, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22461450

ABSTRACT

Galectin-3 (Gal-3) is a ß-galactoside-binding lectin implicated in the regulation of macrophage activation and inflammatory mediator production. In the present studies, we analyzed the role of Gal-3 in liver inflammation and injury induced by acetaminophen (APAP). Treatment of wild-type (WT) mice with APAP (300 mg/kg, ip) resulted in centrilobular hepatic necrosis and increases in serum transaminases. This was associated with increased hepatic expression of Gal-3 messenger RNA and protein. Immunohistochemical analysis showed that Gal-3 was predominantly expressed by mononuclear cells infiltrating into necrotic areas. APAP-induced hepatotoxicity was reduced in Gal-3-deficient mice. This was most pronounced at 48-72 h post-APAP and correlated with decreases in APAP-induced expression of 24p3, a marker of inflammation and oxidative stress. These effects were not due to alterations in APAP metabolism or hepatic glutathione levels. The proinflammatory proteins, inducible nitric oxide synthase (iNOS), interleukin (IL)-1ß, macrophage inflammatory protein (MIP)-2, matrix metalloproteinase (MMP)-9, and MIP-3α, as well as the Gal-3 receptor (CD98), were upregulated in livers of WT mice after APAP intoxication. Loss of Gal-3 resulted in a significant reduction in expression of iNOS, MMP-9, MIP-3α, and CD98, with no effects on IL-1ß. Whereas APAP-induced increases in MIP-2 were augmented at 6 h in Gal-3(-/-) mice when compared with WT mice, at 48 and 72 h, they were suppressed. Tumor necrosis factor receptor-1 (TNFR1) was also upregulated after APAP, a response dependent on Gal-3. Moreover, exaggerated APAP hepatotoxicity in mice lacking TNFR1 was associated with increased Gal-3 expression. These data demonstrate that Gal-3 is important in promoting inflammation and injury in the liver following APAP intoxication.


Subject(s)
Acetaminophen/toxicity , Analgesics, Non-Narcotic/toxicity , Chemical and Drug Induced Liver Injury/etiology , Galectin 3/metabolism , Inflammation Mediators/metabolism , Liver/drug effects , Acetaminophen/metabolism , Analgesics, Non-Narcotic/metabolism , Animals , Biotransformation , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Cytochrome P-450 CYP2E1/metabolism , Galectin 3/deficiency , Galectin 3/genetics , Gene Expression Regulation , Glutathione/metabolism , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Necrosis , RNA, Messenger/metabolism , Receptors, Tumor Necrosis Factor, Type I/deficiency , Receptors, Tumor Necrosis Factor, Type I/genetics , Time Factors
15.
Article in English | MEDLINE | ID: mdl-23304222

ABSTRACT

Herbal medicines have been used in preventing and treating skin disorders for centuries. It has been demonstrated that systemic administration of chrysanthemum extract exhibits anti-inflammatory properties. However, whether topical applications of apigenin, a constituent of chrysanthemum extract, influence cutaneous inflammation is still unclear. In the present study, we first tested whether topical applications of apigenin alleviate cutaneous inflammation in murine models of acute dermatitis. The murine models of acute allergic contact dermatitis and acute irritant contact dermatitis were established by topical application of oxazolone and phorbol 12-myristate 13-acetate (TPA), respectively. Inflammation was assessed in both dermatitis models by measuring ear thickness. Additionally, the effect of apigenin on stratum corneum function in a murine subacute allergic contact dermatitis model was assessed with an MPA5 physiology monitor. Our results demonstrate that topical applications of apigenin exhibit therapeutic effects in both acute irritant contact dermatitis and allergic contact dermatitis models. Moreover, in comparison with the vehicle treatment, topical apigenin treatment significantly reduced transepidermal water loss, lowered skin surface pH, and increased stratum corneum hydration in a subacute murine allergic contact dermatitis model. Together, these results suggest that topical application of apigenin could provide an alternative regimen for the treatment of dermatitis.

SELECTION OF CITATIONS
SEARCH DETAIL