Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Front Oncol ; 14: 1377878, 2024.
Article in English | MEDLINE | ID: mdl-38800390

ABSTRACT

Introduction: We previously made a detailed expansion to the gasless transaxillary endoscopic thyroidectomy(GTET) procedure described in the previous literatures. In this study, we optimized the procedure focused on the limitation of the approach in terms of trauma and lymph node dissection and made a comparison with the early procedure. Materials and methods: This paper gave a detailed description of the updated procedure and prospectively collected data about patients with papillary thyroid carcinoma(PTC) performed by the two procedures from December 2020 to April 2023. The differences in surgical outcome, surgical trauma and parathyroid gland(PG) function protection were analyzed. Results: Of the 302 patients, 184 underwent with early procedure(EP), and 118 underwent with updated procedure(UP). The surgical outcomes of operative time, time of thyroidectomy and central neck dissection, blood loss, drainage and postoperative hospital stay were shorter in UP than that of the EP. The mean number of lymph nodes retrieved and weight of dissection lymphatic tissue in the UP were significantly more than that in EP without increasing the mean number of metastatic lymph nodes. Postoperative complications did not differ between the two procedures. The UP had more advantages in the identification and preservation of the superior parathyroid gland, however, it did not improve the preservation in situ of the inferior parathyroid gland. The visual analog scale score for pain and the changes among inflammation factors was lower in the UP. Conclusion: The UP of GTET could perform safely and efficiently while reducing surgical trauma in selected patients.

2.
Int J Biol Macromol ; 270(Pt 1): 131887, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688795

ABSTRACT

From the perspective of rubber/glass transition, this study clarified that the impact of dextran on retarding hardening behavior and slowing starch retrogradation of Chinese Steamed Bread (CSB) depended on its molecular weight and concentration level. Guggenheim-Anderson-de Boer (GAB) model was fitted to explore critical behavior changes in rubber/glass transition of CSB. Incorporation of high molecular weight dextran enhanced the elasticity of dough and porosity of CSB, reduced the aging and hardening degree of CSB at appropriate addition levels. CSB hardness showed a growing tendency during storage, while macromolecular dextran reduced the hardness and retrogradation degree by 22.87 % and 67.53 %. Dextran with high molecular weights lowered the glass transition temperature (Tg) and improved the moisture sorption and molecular mobility of CSB under various relative humidity (RHs) conditions by providing hydrophilic sites or intermolecular space to bind water molecules. Meanwhile, it reinforced the binding between denatured gluten and gelatinized starch. Both of them devoted to starch retrogradation inhibition and stable quality maintenance of CSB. CSB is suggested to maintain stable quality at room temperature with RHs ≤33 % to prevent rubber/glass transition. This work provided theoretical guidance for fractionation application of dextran to regulate the quality and extend the shelf-life of flour products.


Subject(s)
Bread , Dextrans , Molecular Weight , Rubber , Starch , Bread/analysis , Dextrans/chemistry , Flour/analysis , Glass/chemistry , Rubber/chemistry , Starch/chemistry , Steam , Transition Temperature
3.
Adv Sci (Weinh) ; 11(13): e2306364, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38286670

ABSTRACT

γδ T cells are evolutionarily conserved T lymphocytes that manifest unique antitumor efficacy independent of tumor mutation burden (TMB) and conventional human leukocyte antigen (HLA) recognition. However, the dynamic changes in their T cell receptor (TCR) repertoire during cancer progression and treatment courses remain unclear. Here, a comprehensive characterization of γδTCR repertoires are performed in thyroid cancers with divergent differentiation states through cross-sectional studies. The findings revealed a significant correlation between the differentiation states and TCR repertoire diversity. Notably, highly expanded clones are prominently enriched in γδ T cell compartment of dedifferentiated patients. Moreover, by longitudinal investigations of the γδ T cell response to various antitumor therapies, it is found that the emergence and expansion of the Vδ2neg subset may be potentially associated with favorable clinical outcomes after post-radiotherapeutic immunotherapy. These findings are further validated at single-cell resolution in both advanced thyroid cancer patients and a murine model, underlining the importance of further investigations into the role of γδTCR in cancer immunity and therapeutic strategies.


Subject(s)
Intraepithelial Lymphocytes , Thyroid Neoplasms , Humans , Mice , Animals , Receptors, Antigen, T-Cell, gamma-delta/genetics , Cross-Sectional Studies , Immunotherapy , Thyroid Neoplasms/therapy
4.
Br J Cancer ; 130(6): 925-933, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38238428

ABSTRACT

BACKGROUND: The diagnosis of follicular thyroid carcinoma (FTC) prior to surgery remains a major challenge in the clinic. METHODS: This multicentre diagnostic study involved 41 and 150 age- and sex-matched patients in the training cohort and validation cohort, respectively. The diagnostic properties of circulating small extracellular vesicle (sEV)-associated and cell-free RNAs were compared by RNA sequencing in the training cohort. Subsequently, using a quantitative real-time polymerase chain reaction (qRT‒PCR) assay, high-quality candidates were identified to construct an RNA classifier for FTC and verified in the validation cohort. The parallel expression, stability and influence of the RNA classifier on surgical strategy were also investigated. RESULTS: The diagnostic properties of sEV long RNAs, cell-free long RNAs and sEV microRNAs (miRNAs) were comparable and superior to those of cell-free miRNAs in RNA sequencing. Given the clinical application, the circulating sEV miRNA (CirsEV-miR) classifier was developed from five miRNAs based on qRT‒PCR data, which could well identify FTC patients (area under curve [AUC] of 0.924 in the training cohort and 0.844 in the multicentre validation cohort). Further tests revealed that the CirsEV-miR score was significantly correlated with the tumour burden, and the levels of sEV miRNAs were also higher in sEVs from the FTC cell line, organoid and tissue. Additionally, circulating sEV miRNAs remained constant after different treatments, and the addition of the CirsEV-miR classifier as a biomarker improves the current surgical strategy. CONCLUSIONS: The CirsEV-miR classifier could serve as a noninvasive, convenient, specific and stable auxiliary test to help diagnose FTC following ultrasonography.


Subject(s)
Adenocarcinoma, Follicular , Extracellular Vesicles , MicroRNAs , Thyroid Neoplasms , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Adenocarcinoma, Follicular/diagnosis , Adenocarcinoma, Follicular/genetics , Adenocarcinoma, Follicular/metabolism , Biomarkers , Extracellular Vesicles/metabolism , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/genetics , Thyroid Neoplasms/metabolism
5.
Int J Biol Macromol ; 249: 126117, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37541481

ABSTRACT

Kidney tea saponin (KTS) exhibits considerable efficacy in lowering glucose levels; however, it does not have widespread applications owing to its low intestinal utilization. Therefore, in the present study, we prepared sodium alginate (SA)/sodium hyaluronate (HA)/hydrolyzed silk (SF) gel beads for the effective encapsulation and targeted intestinal release of KTS. The gel beads exhibited an encapsulation rate of 90.67 % ± 0.27 % and a loading capacity of 3.11 ± 0.21 mg/mL; furthermore, the release rate of KTS was 95.46 % ± 0.02 % after 8 h of simulated digestion. Fourier transform infrared spectroscopy revealed that the hydroxyl in SA/HA/SF-KTS was shifted toward the strong peak; this was related to KTS encapsulation. Furthermore, scanning electron microscopy revealed that the gel bead space network facilitates KTS encapsulation. In addition, the ability of KTS and the gel beads to inhibit α-amylase (IC50 = 0.93 and 1.37 mg/mL, respectively) and α-glucosidase enzymes (IC50 = 1.17 and 0.93 mg/mL, respectively) was investigated. In vitro colonic fermentation experiments revealed that KTS increased the abundance of Firmicutes/Bacteroidetes and butyric acid-producing bacteria. The study showed that the developed gel-loading system plays a vital role in delivering bioactive substances, achieving slow release, and increasing the abundance and diversity of intestinal flora.


Subject(s)
Alginates , Gastrointestinal Microbiome , Humans , Alginates/chemistry , Delayed-Action Preparations/pharmacology , Hyaluronic Acid , Silk , Tea , Kidney , Hexuronic Acids/chemistry , Glucuronic Acid/chemistry
6.
World J Surg Oncol ; 21(1): 221, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37491247

ABSTRACT

Radical cure and functional preservation of tumors are the fundamental goals of surgical treatment of head and neck tumors, and the preservation of good aesthetics is a higher pursuit on this basis. Fully hiding the surgical incision and reducing the visibility of scars are important goals of cosmetic surgery. Using complete endoscopy for the head and neck is an effective method. CO2-free transaxillary total endoscopic surgery is a method with many advantages, which has been widely used in the resection of thyroid tumors, but for other parts and types of tumors in the head and neck, this surgical method is rarely used. The research team expanded its application scope and applied it to submandibular gland tumor resection and other head and neck surgeries for the first time. Through this exploration, it improved traction devices such as retractors, strictly limited the surgical indications, analyzed and summarized the key points, steps and methods of surgery, and built a treatment system for head and neck tumor surgery under complete endoscopy using the non-inflatable transaxillary approach. In this article, we introduce the system and select typical cases to share.


Subject(s)
Head and Neck Neoplasms , Thyroid Neoplasms , Humans , Endoscopy/methods , Head and Neck Neoplasms/surgery , Thyroid Neoplasms/surgery , Thyroidectomy/methods , Neck Dissection/methods
7.
Pulm Pharmacol Ther ; 80: 102202, 2023 06.
Article in English | MEDLINE | ID: mdl-36906117

ABSTRACT

Pulmonary fibrosis is a chronic interstitial fibrosis lung disease with high mortality, which is often complicated with lung cancer. The incidence of IPF complicated with lung cancer is getting higher and higher. At present, there is no consensus on the management and treatment of pulmonary fibrosis patients with lung cancer. There is an urgent need to develop preclinical drug evaluation methods for IPF with lung cancer and potential therapeutic drugs for IPF with lung cancer. The pathogenic mechanism of IPF is similar to that of lung cancer, and the multi-effect drugs with anticancer and anti-fibrosis will have potential value in the treatment of IPF complicated with lung cancer. In this study, we established an animal model of IPF complicated with lung cancer in situ to evaluate the therapeutic effect of the antiangiogenic drug anlotinib. The pharmacodynamic results in vivo showed that anlotinib could significantly improve the lung function of IPF-LC mice, reduce the content of collagen in lung tissue, increase the survival rate of mice, and inhibit the growth of lung tumor in mice. The results of Western blot and immunohistochemical analysis of lung tissue showed that anlotinib significantly inhibited the expression of fibrosis marker protein α-SMA, Collagen I and Fibronectin and tumor proliferation marker protein PCNA in mouse lung tissue, and down-regulated the content of serum tumor marker CEA. Through transcriptome analysis, we found that anlotinib regulates MAPK signal pathway, PARP signal pathway and coagulation cascade signal pathway in lung cancer and pulmonary fibrosis, which all play an important role in lung cancer and pulmonary fibrosis. In addition, there is crosstalk between the signal pathway participated by the target of anlotinib and MAPK, JAK/STAT and mTOR signal pathway. In summary, anlotinib will be a candidate for IPF-LC treatment.


Subject(s)
Adenocarcinoma of Lung , Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Lung Neoplasms , Mice , Animals , Idiopathic Pulmonary Fibrosis/complications , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Lung , Lung Neoplasms/complications , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Diseases, Interstitial/pathology , Adenocarcinoma of Lung/drug therapy , Collagen/metabolism , Biomarkers/metabolism , Bleomycin/pharmacology
8.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835236

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic interstitial lung disease of unknown etiology. At present, the mortality rate of the deadly disease is still very high, while the existing treatments only delay the progression of the disease and improve the quality of life of patients. Lung cancer (LC) is the most fatal disease in the world. In recent years, IPF has been considered to be an independent risk factor for the development of LC. The incidence of lung cancer is increased in the patients with IPF and the mortality is also significantly increased in the patients inflicted with the two diseases. In this study, we evaluated an animal model of pulmonary fibrosis complicated with LC by implanting LC cells orthotopically into the lungs of mice several days after bleomycin induction of the pulmonary fibrosis in the same mice. In vivo studies with the model showed that exogenous recombinant human thymosin beta 4 (exo-rhTß4) alleviated the impairment of lung function and severity of damage of the alveolar structure by the pulmonary fibrosis and inhibited the proliferation of LC tumor growth. In addition, in vitro studies showed that exo-rhTß4 inhibited the proliferation and migration of A549 and Mlg cells. Furthermore, our results also showed that rhTß4 could effectively inhibit the JAK2-STAT3 signaling pathway and this might exert an anti-IPF-LC effect. The establishment of the IPF-LC animal model will be helpful for the development of drugs for the treatment of IPF-LC. Exogenous rhTß4 can be potentially used for the treatment of IPF and LC.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Neoplasms , Thymosin , Animals , Humans , Mice , Bleomycin , Idiopathic Pulmonary Fibrosis/therapy , Janus Kinase 2/metabolism , Lung/pathology , Lung Neoplasms/therapy , Quality of Life , Signal Transduction , STAT3 Transcription Factor/metabolism , Thymosin/therapeutic use
9.
Phytomedicine ; 112: 154687, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36804756

ABSTRACT

BACKGROUND: Hepatocellular carcinoma has high ability of vascular invasion and metastasis. Vasculogenic mimicry (VM) is closely related to the metastasis and recurrence of hepatocellular carcinoma (HCC). According to previous research, Chloranthus henryi has anti-tumor effect, but its molecular mechanism in the treatment of HCC has not yet been stated. PURPOSE: In our study, we aimed to investigate the effect of the extract of Chloranthus henryi in HCC and its target and molecular mechanism. We hoped to explore potential drugs for HCC treatment. STUDY DESIGN/METHODS: In this study, we isolated a chalcone compound from Chloranthus henryi, compound 4, identified as flavokawain A (FKA). We determined the anti-HCC effect of FKA by MTT and identified the target of FKA by molecular docking and CETSA. Hepatoma cells proliferation, migration, invasion, and VM formation were examined using EDU, wound healing, transwell, vasculogenic mimicry, and IF. WB, RT-PCR, and cell transfection were used to explore the mechanism of FKA on hepatoma cells. Tissue section staining is mainly used to demonstrate the effect of FKA on HCC in vivo. RESULTS: We confirmed that FKA can directly interact with CXCL12 and HCC proliferation, migration, invasion, and VM formation were all inhibited through reversing the EMT progress in vitro and in vivo through the PI3K/Akt/NF-κB signaling pathway. Additionally, by overexpressing and knocking down CXCL12, we got the same results. CONCLUSION: FKA attenuated proliferation, invasion and metastatic and reversed EMT in HCC via PI3K/Akt/HIF-1α/NF-κB/Twist1 pathway by targeting CXCL12. This study proposed that FKA may be a candidate drug and prospective strategy for HCC therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Proto-Oncogene Proteins c-akt , NF-kappa B , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Liver Neoplasms/pathology , Cell Line, Tumor , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Cell Movement , Epithelial-Mesenchymal Transition , Chemokine CXCL12
10.
Eur J Pharmacol ; 943: 175438, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36682482

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease, and its 5-year mortality rate is even higher than the mortality rate of some cancers. Fibrosis can cause irreversible damage to lung structure and function. Treatment options for IPF remain limited, and there is an urgent need to develop effective therapeutic drugs. Protease activated receptor-1 (PAR-1) is a G-protein-coupled receptor and is considered a potential target for the treatment of fibrotic diseases. Vorapaxar is a clinically approved PAR-1 antagonist for cardiovascular protection. The purpose of this study was to explore the potential effect and mechanism of Vorapaxar on pulmonary fibrosis in vivo and in vitro. In the experimental animal model, Vorapaxar can effectively alleviate bleomycin (BLM)-induced pulmonary fibrosis. Treatment with 2.5, 5 or 10 mg/kg Vorapaxar once a day reduced the degree of fibrosis in a dose-dependent manner. The expression of fibronectin, collagen and α smooth muscle actin decreased significantly at the messenger RNA (mRNA) and protein levels in treated mice. In vitro, our results showed that Vorapaxar could inhibit the activation of fibroblasts induced by thrombin in a dose-dependent manner. In terms of mechanism, Vorapaxar inhibits the signal transduction of JAK2/STAT1/3 by inhibiting the activation of protease activated receptor 1, which reduces the expression of HSP90ß and the interaction between HSP90ß and transforming growth factor-ß (TGFß) receptor II and inhibits the TGFß/Smad signaling pathway. In conclusion, Vorapaxar inhibits the activation of pulmonary fibroblasts induced by thrombin by targeting protease activated receptor 1 and alleviates BLM-induced pulmonary fibrosis in mice.


Subject(s)
Idiopathic Pulmonary Fibrosis , Receptor, PAR-1 , Animals , Mice , Bleomycin/toxicity , Fibroblasts , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Mice, Inbred C57BL , Signal Transduction , STAT1 Transcription Factor/metabolism , Thrombin/metabolism , Transforming Growth Factor beta/metabolism
11.
Foods ; 12(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36613440

ABSTRACT

Peptide iron chelate is widely regarded as one of the best iron supplements for relieving iron deficiency. In this study, a new type of walnut peptide iron (WP-Fe) chelate was prepared using low molecular weight walnut peptides (WP) as raw materials. Under the conditions of this study, the chelation rate and iron content of the WP-Fe chelate were 71.87 ± 1.60% and 113.11 ± 2.52 mg/g, respectively. Fourier transform infrared spectroscopy (FTIR), zeta potential, amino acid composition, and other structural analysis showed that WP-Fe is formed by the combination of carboxyl, amino and carbonyl with Fe2+. The WP-Fe chelate exhibits a honeycomb-like bulk structure different from that of WP. In addition, we predicted and established the binding model of ferrous ion and WP by molecular docking technology. After chelation, the free radical scavenging ability of the WP-Fe chelate was significantly higher than that of the WP. Overall, the WP-Fe chelate has high iron-binding capacity and antioxidant activity. We believe that peptides from different sources also have better iron binding capacity, and peptide iron chelates are expected to become a promising source of iron supplement and antioxidant activities.

12.
Nat Commun ; 13(1): 6619, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333338

ABSTRACT

Cancer-associated fibroblasts (CAFs) are the predominant components of the tumor microenvironment (TME) and influence cancer hallmarks, but without systematic investigation on their ubiquitous characteristics across different cancer types. Here, we perform pan-cancer analysis on 226 samples across 10 solid cancer types to profile the TME at single-cell resolution, illustrating the commonalities/plasticity of heterogenous CAFs. Activation trajectory of the major CAF types is divided into three states, exhibiting distinct interactions with other cell components, and relating to prognosis of immunotherapy. Moreover, minor CAF components represent the alternative origin from other TME components (e.g., endothelia and macrophages). Particularly, the ubiquitous presentation of endothelial-to-mesenchymal transition CAF, which may interact with proximal SPP1+ tumor-associated macrophages, is implicated in endothelial-to-mesenchymal transition and survival stratifications. Our study comprehensively profiles the shared characteristics and dynamics of CAFs, and highlight their heterogeneity and plasticity across different cancer types. Browser of integrated pan-cancer single-cell information is available at https://gist-fgl.github.io/sc-caf-atlas/ .


Subject(s)
Cancer-Associated Fibroblasts , Neoplasms , Humans , Cancer-Associated Fibroblasts/metabolism , Tumor Microenvironment , Single-Cell Analysis , Neoplasms/pathology , Macrophages/metabolism , Fibroblasts/metabolism
13.
BMC Cancer ; 22(1): 799, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35854245

ABSTRACT

OBJECTIVE: Head and neck squamous cell carcinoma (HNSCC) is one severe malignancy driven by complex cellular and signaling mechanisms. However, the roles of circular RNAs (circRNAs) in HNSCC's development remains poorly understood. Therefore, this study investigated the functions of differentially expressed circRNAs in regulating HNSCC cell functions. METHODS: Differentially expressed circRNAs were characterized through RNA sequencing in HNSCC tissues. CircRNA's identity was then confirmed using RT-PCR and Sanger's sequencing. Next, expression levels of circRNA and mRNA were detected by qRT-PCR, after which protein abundances were measured by Western blotting. Subsequently, the proliferation, migration, and invasion of HNSCC cells was assessed by MTS, wound healing, and Transwell system, respectively, followed by identification of circRNA-binding proteins in HNSCC cells by circRNA pull-down, coupled with mass spectrometry. RESULTS: Great alterations in circRNA profiles were detected in HNSCC tissues, including the elevated expression of circ_0000045. As observed, silencing of circ_0000045 effectively repressed the proliferation, migration, and invasion of HNSCC cell lines (FaDu and SCC-9). Contrarily, circ_0000045's overexpression promoted the proliferation, migration, and invasion in FaDu and SCC-9 cells. Results also showed that circ_0000045 was associated with multiple RNA-binding proteins in HNSCC cells, such as HSP70. Moreover, circ_0000045 knockdown enhanced HSP70 expression and inhibited JNK2 and P38's expression in HNSCC cells, which were oppositely regulated by circ_0000045's overexpression. CONCLUSION: The high expression of circ_0000045; therefore, promoted cell proliferation, migration, and invasion during HNSCC's development through regulating HSP70 protein and mitogen-activated protein kinase signaling.


Subject(s)
Head and Neck Neoplasms , MicroRNAs , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Head and Neck Neoplasms/genetics , Humans , MicroRNAs/genetics , RNA, Circular/genetics , Squamous Cell Carcinoma of Head and Neck/genetics
14.
World J Surg Oncol ; 20(1): 220, 2022 Jun 30.
Article in English | MEDLINE | ID: mdl-35773716

ABSTRACT

OBJECTIVE: Discuss the application value of digital surgical technology in the reconstruction of head and neck defects after tumor resection and comprehensively evaluate time-economic-benefit cost. METHODS: A retrospective analysis of head and neck cancer patients who underwent reconstructive operations in head and neck surgery at Sichuan Cancer Hospital from January 2015 to January 2021 was performed. According to the inclusion and exclusion criteria, a total of 52 cases were included, including 25 cases using digital surgery (DS) and 27 cases using the conventional surgery (CS). The clinical-pathological characteristics, postoperative complications, functional aesthetic evaluation indexes, and time-cost-satisfaction evaluation indexes between the two groups were compared and statistically analyzed. Typical cases using digital surgery were shared. RESULTS: Outcomes between the two groups were comparable, and there was no significant difference in survival outcome and follow-up time between the two groups (P > 0.05). There was no significant difference between the two groups in the defect size, pathological type, other major clinicopathological features, or operation-related indicators (P > 0.05). The incidence of titanium plate displacement, deformation or exposure, and facial scar deformity in the DS group was significantly lower than that in the CS group (P < 0.05). However, there was no significant difference in other short-term or long-term complications (P > 0.05). The incidence of dysphagia and eating disorders in the DS group was significantly reduced (P < 0.05). The speech and social functions were improved, but not significantly (P > 0.05). Meanwhile, there was no significant difference in the evaluation index of facial aesthetics in this study (P > 0.05). Furthermore, the total operation time, preparation time of bone flap from the donor site, osteotomy time, and reconstruction time in the DS group were significantly lower than those in the traditional operation group (P < 0.05), but the shaping time and vascular anastomosis time of recipient area could not be shortened (P > 0.05). In addition, there was no significant difference in total hospitalization days between the DS group and CS group (P > 0.05), but the time of ICU treatment and postoperative intravenous nutrition support in the DS group were shorter than those in the CS group (P < 0.05). In particular, the preoperative doctor-patient communication of the DS group was more effective, and the treatment satisfaction of patients including their families was higher after operation (P < 0.05). CONCLUSION: Comprehensive application of digital surgical technology (CAD, CAM, VR, MA, etc.) in the reconstruction of the head and neck after tumor resection is feasible in clinical practice, which can not only improve the accuracy of repair, decrease some surgical complications, better preserve and improve patient's diet and speech function, and reduce the operation and hospitalization time, but also increase the treatment cost. Furthermore, it is conducive to doctor-patient communication and improves patient satisfaction.


Subject(s)
Head and Neck Neoplasms , Plastic Surgery Procedures , Cicatrix , Esthetics , Head and Neck Neoplasms/surgery , Humans , Retrospective Studies , Surgical Flaps , Treatment Outcome
15.
Phytother Res ; 36(4): 1807-1821, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35229382

ABSTRACT

Most antiangiogenic inhibitors targeting endothelium-dependent vessels cannot inhibit tumor growth but promote tumor invasion and metastasis in some patients. Vasculogenic mimicry (VM) employs mechanisms that differ from those used to construct endothelium-dependent vessels. Inhibiting VM may be a novel antiangiogenic strategy against alternative tumor vascularization. In this paper, myricetin was selected from among several flavonoid compounds as an effective PAR1 antagonist. In two different hepatocellular carcinoma (HCC) cell lines high-expressed PAR1, myricetin inhibited cell migration, invasion and VM formation and reversed the expression of epithelial-endothelial transition (EET) markers by inhibiting PAR1 activation. Knockout of PAR1 inhibited HCC cell invasion and metastasis and weakened the inhibitory effect of myricetin on HCC cells. The migration, invasion and tube formation ability of PLC-PRF-5 cells were enhanced after PAR1 overexpression, and the inhibitory effect of myricetin was enhanced. A docking assay revealed that myricetin binds to Leu258 and Thr261 in the PAR1 activity pocket. Mutation of Leu258 and Thr261 inhibited the antitumor effect of myricetin in vitro and in vivo. In summary, myricetin reverses PAR1-mediated EET and inhibits HCC cell invasion, metastasis, VM formation and angiogenesis by targeting PAR1, and Leu258 and Thr261 of PAR1 participate in VM and angiogenesis in HCC tissues.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Angiogenesis Inhibitors/pharmacology , Angiogenesis Inhibitors/therapeutic use , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Endothelium/metabolism , Endothelium/pathology , Epithelial-Mesenchymal Transition , Flavonoids/pharmacology , Flavonoids/therapeutic use , Humans , Liver Neoplasms/genetics , Neovascularization, Pathologic/drug therapy , Receptor, PAR-1
17.
Inflammation ; 45(3): 1076-1088, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34822072

ABSTRACT

The emergence of severe acute syndrome coronavirus 2 (SARS-CoV-2) in December 2019 has led to the global COVID-19 pandemic. Although the symptoms of most COVID-19 patients are mild or self-curable, most of severe patients have sepsis caused by cytokine storms, which greatly increases the case fatality rate. Moreover, there is no effective drug that can limit the novel coronavirus thus far, so it is more needed to develop antiviral drugs for the SARS-CoV-2. In our research, we employed the techniques of molecular docking to screen 35 flavonoid compounds among which 29 compounds have Z-scores lower than - 6. Then, ( -)-gallocatechin gallate, ( +)-gallocatechin and baicalein were identified to have potent inhibitory activity against SARS-CoV-2 Mpro with IC50 values of 5.774 ± 0.805 µM, 13.14 ± 2.081 µM and 5.158 ± 0.928 µM respectively by FRET assay. Molecular docking results also showed that ( -)-gallocatechin gallate, ( +)-gallocatechin and baicalein can non-covalently bind to Mpro through π-π stacking and hydrogen bonds in the Cys145 catalytic site. We further evaluated the effect of ( -)-gallocatechin gallate and baicalein on cytokine storms using a mouse model of sepsis. ( -)-Gallocatechin gallate and baicalein significantly reduced sepsis of mouse models on weight, murine sepsis score, and survival rate and reduced the inflammatory factor levels, such as TNF-α, IL-1α, IL-4, and IL-10. Overall, ( -)-gallocatechin gallate and baicalein show certain potential of treatment against COVID-19.


Subject(s)
COVID-19 Drug Treatment , Sepsis , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Catechin/analogs & derivatives , Coronavirus 3C Proteases , Cytokine Release Syndrome , Flavanones , Humans , Mice , Molecular Docking Simulation , Pandemics , Protease Inhibitors/pharmacology , SARS-CoV-2 , Sepsis/drug therapy
18.
Phytomedicine ; 91: 153704, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34419736

ABSTRACT

BACKGROUND: COVID-19 (Coronavirus Disease-2019) has spread widely around the world and impacted human health for millions. The lack of effective targeted drugs and vaccines forces scientific world to search for new effective antiviral therapeutic drugs. It has reported that flavonoids have potential inhibitory activity on SARS-CoV-2 Mpro and anti-inflammatory properties. Dihydromyricetin, as a flavonol, also has antiviral and anti-inflammatory potential. However, the inhibition of dihydromyricetin on SARS-CoV-2 Mpro and the protective effect of dihydromyricetin on pulmonary inflammation and fibrosis have not been proved and explained. PURPOSE: The coronavirus main protease (Mpro) is essential for SARS-CoV-2 replication and to be recognized as an attractive drug target, we expect to find the inhibitor of Mpro. Novel coronavirus infection can cause severe inflammation and even sequelae of pulmonary fibrosis in critically ill patients. We hope to find a drug that can not only inhibit virus replication but also alleviate inflammation and pulmonary fibrosis in patients. METHODS: FRET-based enzymatic assay was used to evaluate the inhibit activity of dihydromyricetin on SARS-CoV-2 Mpro. Molecular docking was used to identify the binding pose of dihydromyricetin with SARS-CoV-2 Mpro. The protective effects of dihydromyricetin against BLM-induced pulmonary inflammation and fibrosis were investigated in C57BL6 mice. BALF and lung tissue were collected for inflammation cells count, ELISA, masson and HE staining, western blotting and immunohistochemistry to analyze the effects of dihydromyricetin on pulmonary inflammation and fibrosis. MTT, western blotting, reverse transcription-polymerase chain reaction (RT-PCR) and wound healing were used to analyze the effects of dihydromyricetin on lung fibrosis mechanisms in Mlg cells. RESULTS: In this study, we found that dihydromyricetin is a potent inhibitor targeting the SARS-CoV-2 Mpro with a half-maximum inhibitory concentration (IC50) of 1.716 ± 0.419 µM, using molecular docking and the FRET-based enzymatic assay. The binding pose of dihydromyricetin with SARS-CoV-2 Mpro was identified using molecular docking method. In the binding pocket of SARS-CoV-2 Mpro, the dihydrochromone ring of dihydromyricetin interact with the imidazole side chain of His163 through π-π stacking. The 1-oxygen of dihydromyricetin forms a hydrogen bond with the backbone nitrogen of Glu166. The 3-, 7-, 3'- and 4'-hydroxyl of dihydromyricetin interact with Gln189, Leu141, Arg188 and Thr190 through hydrogen bonds. Moreover, our results showed that dihydromyricetin can significantly alleviate BLM-induced pulmonary inflammation by inhibiting the infiltration of inflammation cells and the secretion of inflammation factors in the early process and also ameliorate pulmonary fibrosis by improving pulmonary function and down-regulate the expression of α-SMA and fibronectin in vivo. Our results also showed that dihydromyricetin inhibits the migration and activation of myofibroblasts and extracellular matrix production via transforming growth factor (TGF)-ß1/Smad signaling pathways. CONCLUSION: Dihydromyricetin is an effective inhibitor for SARS-CoV-2 Mpro and it prevents BLM-induced pulmonary inflammation and fibrosis in mice. Dihydromyricetin will be a potential medicine for the treatment of COVID-19 and its sequelae.


Subject(s)
Coronavirus 3C Proteases/antagonists & inhibitors , Flavonols/pharmacology , Protease Inhibitors , SARS-CoV-2 , Virus Replication , Animals , Antiviral Agents/pharmacology , COVID-19 , Fibrosis , Humans , Lung/pathology , Lung/virology , Mice , Mice, Inbred C57BL , Molecular Docking Simulation , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects
19.
Front Pharmacol ; 12: 669642, 2021.
Article in English | MEDLINE | ID: mdl-34220507

ABSTRACT

The coronavirus disease 2019 (COVID-19) has spread widely around the world and has seriously affected the human health of tens of millions of people. In view of lacking anti-virus drugs target to SARS-CoV-2, there is an urgent need to develop effective new drugs. In this study, we reported our discovery of SARS-CoV-2 Mpro inhibitors. We selected 15 natural compounds, including 7 flavonoids, 3 coumarins, 2 terpenoids, one henolic, one aldehyde and one steroid compound for molecular docking and enzymatic screening. Myricetin were identified to have potent inhibit activity with IC50 3.684 ± 0.076 µM in the enzyme assay. The binding pose of Myricetin with SARS-CoV-2 Mpro was identified using molecular docking method. In the binding pocket of SARS-CoV-2 Mpro, the chromone ring of Myricetin interacts with His41 through π-π stacking, and the 3'-, 4'- and 7-hydroxyl of Myricetin interact with Phe140, Glu166and Asp187 through hydrogen bonds. Significantly, our results showed that Myricetin has potent effect on bleomycin-induced pulmonary inflammation by inhibiting the infiltration of inflammatory cells and the secretion of inflammatory cytokines IL-6, IL-1α, TNF-α and IFN-γ. Overall, Myricetin may be a potential drug for anti-virus and symptomatic treatment of COVID-19.

20.
Gland Surg ; 10(5): 1756-1766, 2021 May.
Article in English | MEDLINE | ID: mdl-34164319

ABSTRACT

The past decade has witnessed rapid advances in gasless transaxillary endoscopic thyroidectomy (GTET) for thyroid cancer, which has become a reliable procedure with good therapeutic effectiveness, aesthetic benefits, and safety. This procedure has been widely promoted in some Asian countries; however, few studies have described the specific surgical steps for unilateral low-risk thyroid cancer. Based on a review of the literature and our own clinical experience, we introduce in detail the surgical procedure of GTET for the unilateral low-risk thyroid cancer, briefly summarized into Li's 6 steps: surgical position and incision design; creation of surgical cavities; dissection of the superior pole of the thyroid and its vessels, and identification and protection of superior laryngeal nerve; identification and protection of the superior parathyroid gland, and identification of the inferior parathyroid gland; identification and protection of the recurrent laryngeal nerve and the inferior parathyroid gland, and central neck dissection; and processing of the suspensory ligaments of thyroid gland and en bloc resection of the tumor. The six-step approach is simple to learn. The lymph nodes are dissected first, followed by resection of the primary lesion and protect important structures, which meets the principles of radical tumor treatment. It is hoped that the proposed Li's six-step method can promote the standardized, safe, and wide application in treating early thyroid cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...