Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.757
Filter
1.
Heliyon ; 10(9): e29825, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38726132

ABSTRACT

This paper explores methodologies to enhance the integration of a green supply chain circular economy within smart cities by incorporating machine learning technology. To refine the precision and effectiveness of the prediction model, the gravitational algorithm is introduced to optimize parameter selection in the support vector machine model. A nationwide prediction model for green supply chain economic development efficiency is meticulously constructed by leveraging public economic, environmental, and demographic data. A comprehensive empirical analysis follows, revealing a noteworthy reduction in mean squared error and root mean squared error with increasing iterations, reaching a minimum of 0.007 and 0.103, respectively-figures that are the lowest among all considered machine learning models. Moreover, the mean absolute percentage error value is remarkably low at 0.0923. The data illustrate a gradual decline in average prediction error and standard deviation throughout the model optimization process, indicative of both model convergence and heightened prediction accuracy. These results underscore the significant potential of machine learning technology in optimizing supply chain and circular economy management. The paper provides valuable insights for decision-makers and researchers navigating the landscape of sustainable development.

2.
BMC Cancer ; 24(1): 576, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730348

ABSTRACT

OBJECTIVE: Nasopharyngeal adenoid cystic carcinoma (NACC) is a rare malignancy with special biological features. Controversies exist regarding the treatment approach and prognostic factors in the IMRT era. This study aimed to evaluate the long-term outcomes and management approaches in NACC. METHODS: Fifty patients with NACC at our institution between 2010 and 2020 were reviewed. Sixteen patients received primary radiotherapy (RT), and 34 patients underwent primary surgery. RESULTS: Between January 2010 and October 2020, a total of 50 patients with pathologically proven NACC were included in our analysis. The median follow-up time was 58.5 months (range: 6.0-151.0 months). The 5-year overall survival rate (OS) and progression-free survival rate (PFS) were 83.9% and 67.5%, respectively. The 5-year OS rates of patients whose primary treatment was surgery and RT were 90.0% and 67.3%, respectively (log-rank P = 0.028). The 5-year PFS rates of patients whose primary treatment was surgery or RT were 80.8% and 40.7%, respectively (log-rank P = 0.024). Multivariate analyses showed that nerve invasion and the pattern of primary treatment were independent factors associated with PFS. CONCLUSIONS: Due to the relative insensitivity to radiation, primary surgery seemed to provide a better chance of disease control and improved survival in NACC. Meanwhile, postoperative radiotherapy should be performed for advanced stage or residual tumours. Cranial nerve invasion and treatment pattern might be important factors affecting the prognosis of patients with NACC.


Subject(s)
Carcinoma, Adenoid Cystic , Nasopharyngeal Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Carcinoma, Adenoid Cystic/radiotherapy , Carcinoma, Adenoid Cystic/mortality , Carcinoma, Adenoid Cystic/pathology , Carcinoma, Adenoid Cystic/surgery , Male , Female , Radiotherapy, Intensity-Modulated/methods , Middle Aged , Adult , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/mortality , Nasopharyngeal Neoplasms/pathology , Aged , Retrospective Studies , Nasopharyngeal Carcinoma/radiotherapy , Nasopharyngeal Carcinoma/mortality , Nasopharyngeal Carcinoma/pathology , Young Adult , Prognosis , Survival Rate , Treatment Outcome , Follow-Up Studies , Adolescent , Progression-Free Survival
3.
Mol Plant Pathol ; 25(5): e13464, 2024 May.
Article in English | MEDLINE | ID: mdl-38695733

ABSTRACT

Many plant pathogens secrete effector proteins into the host plant to suppress host immunity and facilitate pathogen colonization. The necrotrophic pathogen Sclerotinia sclerotiorum causes severe plant diseases and results in enormous economic losses, in which secreted proteins play a crucial role. SsCVNH was previously reported as a secreted protein, and its expression is significantly upregulated at 3 h after inoculation on the host plant. Here, we further demonstrated that deletion of SsCVNH leads to attenuated virulence. Heterologous expression of SsCVNH in Arabidopsis enhanced pathogen infection, inhibited the host PAMP-triggered immunity (PTI) response and increased plant susceptibility to S. sclerotiorum. SsCVNH interacted with class III peroxidase AtPRX71, a positive regulator of innate immunity against plant pathogens. SsCVNH could also interact with other class III peroxidases, thus reducing peroxidase activity and suppressing plant immunity. Our results reveal a new infection strategy employed by S. sclerotiorum in which the fungus suppresses the function of class III peroxidases, the major component of PTI to promote its own infection.


Subject(s)
Arabidopsis , Ascomycota , Fungal Proteins , Plant Diseases , Plant Immunity , Ascomycota/pathogenicity , Plant Diseases/microbiology , Virulence , Arabidopsis/microbiology , Arabidopsis/immunology , Plant Immunity/genetics , Fungal Proteins/metabolism , Fungal Proteins/genetics , Peroxidases/metabolism , Peroxidases/genetics
4.
J Chem Phys ; 160(19)2024 May 21.
Article in English | MEDLINE | ID: mdl-38747431

ABSTRACT

In this paper, we present a combined experimental and theoretical study that explored the initial sticking of water on cooled surfaces. Specifically, these ultra-high vacuum gas-surface scattering experiments utilized supersonic molecular beam techniques in conjunction with a cryogenically cooled highly oriented pyrolytic graphite crystal, giving control over incident kinematic conditions. The D2O translational energy spanning 300-750 meV, the relative D2O flux, and the incident angle could all be varied independently. Three different experimental measurements were made. One involved measuring the total amount of D2O scattering as a function of surface temperature to determine the onset of sticking under non-equilibrium gas-surface collision conditions. Another measurement used He specular scattering to assess structural and coverage information for the interface during D2O adsorption. Finally, we used time-of-flight (TOF) measurements of the scattered D2O to determine how energy is exchanged with the graphite surface at surface temperatures above and near the conditions needed for gaseous condensation. For comparison and elaboration of the roles that internal degrees of freedom play in this process, we also did similar TOF measurements using another mass 20 incident particle, atomic neon. Enriching this study are precise molecular dynamics simulations that elaborate on gas-surface energy transfer and the roles of molecular degrees of freedom in gas-surface collisional energy exchange processes. This study furthers our fundamental understanding of energy exchange and the onset of sticking and ultimately gaseous condensation for gas-surface encounters occurring under high-velocity flows.

5.
Diabetes Metab Syndr ; 18(5): 103037, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38744090

ABSTRACT

AIM: To evaluate the potential of the combined individual vascular histopathological lesion and serum 25-hydroxy vitamin D [25(OH)D] level as predictors of outcomes in patients with diabetes and chronic kidney disease. METHODS: A total of 190 patients with type 2 diabetes and kidney disease stages 1-4 were retrospectively included. Kaplan-Meier analysis and the log-rank test were performed to assess renal survival differences. And the time-dependent receiver operating characteristic analyses were used to characterize the predictive accuracy. Hazard ratios for vascular lesion scores and 25(OH)D levels with renal outcomes were estimated using Cox proportional hazards regression models with follow-up time. RESULTS: Over a median follow-up of 23.78 (12.61, 37.14) months, 71 patients (37.4 %) experienced the renal outcomes. Enrolled patients with more severe vascular lesions had worse kidney function, heavier proteinuria, lower serum 25(OH)D levels, and higher prevalence of composite kidney outcomes. Baseline serum 25(OH)D was a significant independent risk factor for vascular lesion scores. The effect of serum 25(OH)D level on kidney prognosis was more pronounced in males and those with more exacerbated vascular lesions (score 2). The severity of vascular lesions and serum 25(OH)D levels were associated with unfavorable kidney outcomes. Accordingly, further time-dependent receiver operating characteristic curves confirmed that combined 25(OH)D level and vascular lesion score had a stable and reliable performance in renal outcomes prediction at short and long-term follow-up times. CONCLUSIONS: 25(OH)D level and vascular lesion scores in kidney histopathology could serve as a useful risk-stratification tool for predicting renal progression in patients with type 2 diabetes.

6.
bioRxiv ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38712095

ABSTRACT

The architecture of cell culture-two-dimensional (2D) versus three-dimensional (3D)-significantly impacts various cellular factors, including cell-cell interactions, nutrient and oxygen gradients, metabolic activity, and gene expression profiles. This can result in different cellular responses during cancer drug treatment, with 3D-cultured cells often exhibiting higher resistance to chemotherapeutic drugs. While various genetic and proteomic analyses have been employed to investigate the underlying mechanisms of this increased resistance, complementary techniques that provide experimental evidence of spatial molecular profiling data are limited. Stimulated Raman scattering (SRS) microscopy has demonstrated its capability to measure both intracellular drug uptake and growth inhibition. In this work, we applied three-band SRS imaging to 2D and 3D cell cultures and provided a comparative analysis of drug uptake and response with the goal of understanding whether the difference in drug uptake explains the drug resistance in 3D culture compared to 2D. Our investigations revealed that despite similar intracellular drug levels in 2D and 3D A549 cells during lapatinib treatment, the growth of 3D spheroids is less impacted, supporting an enhanced drug tolerance in the 3D microenvironment. We further elucidated drug penetration patterns and the resulting heterogeneous cellular responses across different spheroid layers. Additionally, we investigated the role of the extracellular matrix in modulating drug delivery and cell response, and we discovered that limited drug penetration in 3D could also contribute to lower drug response. Our study provides valuable insights into the intricate mechanisms of increased drug resistance in 3D tumor models during cancer drug treatments.

7.
Sci Adv ; 10(18): eadn3240, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38701205

ABSTRACT

The chiral induced spin selectivity (CISS) effect, in which the structural chirality of a material determines the preference for the transmission of electrons with one spin orientation over that of the other, is emerging as a design principle for creating next-generation spintronic devices. CISS implies that the spin preference of chiral structures persists upon injection of pure spin currents and can act as a spin analyzer without the need for a ferromagnet. Here, we report an anomalous spin current absorption in chiral metal oxides that manifests a colossal anisotropic nonlocal Gilbert damping with a maximum-to-minimum ratio of up to 1000%. A twofold symmetry of the damping is shown to result from differential spin transmission and backscattering that arise from chirality-induced spin splitting along the chiral axis. These studies reveal the rich interplay of chirality and spin dynamics and identify how chiral materials can be implemented to direct the transport of spin current.

8.
Small ; : e2401658, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693074

ABSTRACT

The formation process of biofouling is actually a 4D process with both spatial and temporal dimensions. However, most traditional antifouling coatings, including slippery liquid-infused porous surface (SLIPS), are limited to performing antifouling process in the 2D coating plane. Herein, inspired by the defensive behavior of sea anemones' wielding toxic tentacles, a "4D SLIPS" (FSLIPS) is constructed with biomimetic cilia via a magnetic field self-assembly method for antifouling. The bionic cilia move in 3D space driven by an external magnetic field, thereby preventing the attachment of microorganisms. The FSLIPS releases the gaseous antifoulant (nitric oxide) at 1D time in response to light, thereby achieving a controllable biocide effect on microorganisms. The FSLIPS regulates the movement of cilia via the external magnetic field, and controls the release of NO overtime via the light response, so as to adjust the antifouling modes on demand during the day or night. The light/magnetic response mechanism endow the FSLIPS with the ability to adjust the antifouling effect in the 4D dimension of 1D time and 3D space, effectively realizing the intelligence, multi-dimensionality and precision of the antifouling process.

10.
Iran J Public Health ; 53(1): 1-11, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38694869

ABSTRACT

Background: Influenza is the first infectious disease that implements global monitoring and is one of the major public health issues in the world. Air pollutants have become an important global public health issue, in recent years, and much epidemiological and clinical evidence has shown that air pollutants are associated with respiratory diseases. Methods: We comprehensively searched articles published up to 15 November 2022 in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Database of Chinese sci-tech periodicals, and Wanfang Database. The search strategies were based on keyword combinations related to influenza and air pollutants. The air pollutants included particulate matter (PM2.5, PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), and ozone (O3). Meta-analysis was performed using the R programming language (R4.2.1). Results: A total of 2926 records were identified and 1220 duplicates were excluded. Finally, 19 studies were included in the meta-analysis according to inclusion and exclusion criteria. We observed a significant association between partial air pollutants (PM2.5, NO2, PM10 and SO2) and the incidence risk of influenza. The RRs were 1.0221 (95% CI: 1.0093~1.0352), 1.0395 (95% CI: 1.0131~1.0666), 1.007 (95% CI: 1.0009~1.0132), and 1.0352 (95% CI. 1.0076~1.0635), respectively. However, there was no significant relationship between CO and O3 exposure and influenza, and the RRs were 1.2272 (95% CI: 0.9253~1.6275) and 1.0045 (95% CI: 0.9930~1.0160), respectively. Conclusion: Exposure to PM2.5, NO2, PM10, and SO2 was significantly associated with influenza, which may be risk factors for influenza. The association of CO and O3 with influenza needs further investigation.

11.
Mol Cell Proteomics ; : 100769, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38641227

ABSTRACT

BACKGROUND: The understanding of dynamic plasma proteome features in hybrid immunity and breakthrough infection is limited. A deeper understanding of the immune differences between heterologous and homologous immunization could assist in the future establishment of vaccination strategies. METHODS: In this study, 40 participants who received a third dose of either a homologous BBIBP-CorV or a heterologous ZF2001 protein subunit vaccine following two doses of inactivated coronavirus disease 2019 vaccines and 12 patients with BA.2.2 breakthrough infections were enrolled. Serum samples were collected at Days 0, 28, and 180 following the boosting vaccination and breakthrough and then analyzed using neutralizing antibody tests and mass spectrometer-based proteomics. Mass cytometry of peripheral blood mononuclear cell samples was also performed in this cohort. RESULTS: The chemokine signaling pathway and humoral response markers (IgG2 and IgG3) associated with infection were found to be upregulated in breakthrough infections compared to vaccination-induced immunity. Elevated expression of IGKV, IGHV, IL-17 signaling, and the phagocytosis pathway, along with lower expression of FGL2, were correlated with higher antibody levels in the boosting vaccination groups. The MAPK signaling pathway and Fc gamma R-mediated phagocytosis were more enriched in the heterologous immunization groups than in the homologous immunization groups. CONCLUSION: Breakthrough infections can trigger more intensive inflammatory chemokine responses than vaccination. T-cell and innate immune activation have been shown to be closely related to enhanced antibody levels after vaccination and therefore might be potential targets for vaccine adjuvant design.

12.
Macromolecules ; 57(8): 3776-3797, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38681059

ABSTRACT

In this work, we report the successful synthesis of 17 unique compositions of a poly(ionic liquid) (PIL) ABC triblock terpolymer, poly(S-b-VBMIm-TFSI-b-HA), where S is styrene, VBMIm-TFSI is vinylbenzyl methylimidazolium bis(trifluoromethanesulfonyl)imide, and HA is hexyl acrylate. Nine distinct morphologies were observed, including two-phase and three-phase disordered microphase separated (D2 and D3), two-phase hexagonally packed cylinders (C2), core-shell hexagonally packed cylinders (CCS), three-phase lamellae (L3), two-phase lamellae (L2), core-shell double gyroid (Q230), spheres-in-lamellae (LSI), and a three-phase hexagonal superlattice of cylinders (CSL). The LSI morphology was unambiguously confirmed using small-angle X-ray scattering and transmission electron microscopy. Morphology type significantly impacted the ion conductivity of the PIL ABC triblock terpolymers, where remarkable changes in morphology factor (normalized ion conductivity) were observed with only small changes in the conducting volume fraction, i.e., PIL block composition. An exceptionally high morphology factor of 2.0 was observed from the PIL ABC triblock terpolymer with a hexagonal superlattice morphology due to the three-dimensional narrow, continuous PIL nanodomains that accelerate ion conduction. Overall, this work demonstrates the first systematic study of highly frustrated single-ion conducting ABC triblock terpolymers with a diverse set of morphologies and exceptionally high morphology factors, enabling the exploration of transport-morphology relationships to guide the future design of highly conductive polymer electrolytes.

13.
Adv Mater ; : e2403294, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38657281

ABSTRACT

High performance organic solar cells (OSCs) are usually realized by using post-treatment and/or additive, which can induce the formation of metastable morphology, leading to unfavorable device stability. In terms of the industrial production, the development of high efficiency as-cast OSCs is crucially important, but it remains a great challenge to obtain appropriate active layer morphology and high power conversion efficiency (PCE). Here, efficient as-cast OSCs are constructed via introducing a new polymer acceptor PY-TPT with a high dielectric constant into the D18:L8-BO blend to form a double-fibril network morphology. Besides, the incorporation of PY-TPT enables an enhanced dielectric constant and lower exciton binding energy of active layer. Therefore, efficient exciton dissociation and charge transport are realized in D18:L8-BO:PY-TPT-based device, affording a record-high PCE of 18.60% and excellent photostability in absence of post-treatment. Moreover, green solvent-processed devices, thick-film (300 nm) devices, and module (16.60 cm2) are fabricated, which show PCEs of 17.45%, 17.54%, and 13.84%, respectively. This work brings new insight into the construction of efficient as-cast devices, pushing forward the practical application of OSCs.

14.
Sci Rep ; 14(1): 9552, 2024 04 25.
Article in English | MEDLINE | ID: mdl-38664423

ABSTRACT

Amivantamab is the first dual-specificity antibody targeting EGFR and MET, which is approved for the treatment of locally advanced or metastatic non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion mutations. Cardiovascular toxicities related to amivantamab have not been reported in the CHRYSALIS study. However, the occurrence of cardiovascular events in the real world is unknown. To comprehensively investigate the clinical characteristics, onset times, and outcomes of cardiovascular toxicities associated with amivantamab. The Food and Drug Administration Adverse Event Reporting System (FAERS) database from 1st quarter of 2019 to the 2nd quarter of 2023 was retrospectively queried to extract reports of cardiovascular adverse events (AEs) associated with amivantamab. To perform disproportionality analysis, the reporting odds ratios (RORs) and information components (ICs) were calculated with statistical shrinkage trans-formation formulas and a lower limit of the 95% confidence interval (CI) for ROR (ROR025) > 1 or IC (IC025) > 0 with at least 3 reports was considered statistically significant. A total of 20,270,918 eligible records were identified, among which 98 records were related to cardiovascular events associated with amivantamab. 4 categories of cardiovascular events exhibited positive signals: venous thrombotic diseases, abnormal blood pressure, arrhythmia, and pericardial effusion. Venous thrombotic diseases and abnormal blood pressure were the two most common signals. The median time to onset (TTO) for cardiovascular AEs was 33 days. The cumulative incidence within 90 days was 100% for cardiac failure, 75% for stroke, 63.16% for arrhythmia, 50% for sudden death, and 44.18% for venous thrombotic diseases. Death accounted for 16.3% of all cardiovascular AEs associated with amivantamab. The mortality rates for Major Adverse Cardiovascular Events (MACE) were up to 60%. This pharmacovigilance study systematically explored the cardiovascular adverse events of amivantamab and provided new safety signals based on past safety information. Early and intensified monitoring is crucial, and attention should be directed towards high-risk signals.


Subject(s)
Adverse Drug Reaction Reporting Systems , Cardiovascular Diseases , Databases, Factual , Pharmacovigilance , United States Food and Drug Administration , Humans , Male , United States/epidemiology , Female , Aged , Middle Aged , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/chemically induced , Adverse Drug Reaction Reporting Systems/statistics & numerical data , Retrospective Studies , Adult , Carcinoma, Non-Small-Cell Lung/drug therapy , Aged, 80 and over , Lung Neoplasms/drug therapy
15.
Sci Rep ; 14(1): 8690, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38622216

ABSTRACT

In the era of artificial intelligence, privacy empowerment illusion has become a crucial means for digital enterprises and platforms to "manipulate" users and create an illusion of control. This topic has also become an urgent and pressing concern for current research. However, the existing studies are limited in terms of their perspectives and methodologies, making it challenging to fully explain why users express concerns about privacy empowerment illusion but repeatedly disclose their personal information. This study combines the associative-propositional evaluation model (APE) and cognitive load theory, using event-related potential (ERP) technology to investigate the underlying mechanisms of how the comprehensibility and interpretability of privacy empowerment illusion cues affect users' immediate attitudes and privacy disclosure behaviours; these mechanisms are mediated by psychological processing and cognitive load differences. Behavioural research results indicate that in the context of privacy empowerment illusion cues with low comprehensibility, users are more inclined to disclose their private information when faced with high interpretability than they are when faced with low interpretability. EEG results show that in the context of privacy empowerment illusion cues with low comprehensibility, high interpretability induces greater P2 amplitudes than does low interpretability; low interpretability induces greater N2 amplitudes than does high interpretability. This study extends the scopes of the APE model and cognitive load theory in the field of privacy research, providing new insights into privacy attitudes. Doing so offers a valuable framework through which digital enterprises can gain a deeper understanding of users' genuine privacy attitudes and immediate reactions under privacy empowerment illusion situations. This understanding can help increase user privacy protection and improve their overall online experience, making it highly relevant and beneficial.


Subject(s)
Hominidae , Illusions , Humans , Animals , Privacy/psychology , Disclosure , Cues , Artificial Intelligence , Cognition
16.
BMC Med Imaging ; 24(1): 86, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600525

ABSTRACT

Medical imaging AI systems and big data analytics have attracted much attention from researchers of industry and academia. The application of medical imaging AI systems and big data analytics play an important role in the technology of content based remote sensing (CBRS) development. Environmental data, information, and analysis have been produced promptly using remote sensing (RS). The method for creating a useful digital map from an image data set is called image information extraction. Image information extraction depends on target recognition (shape and color). For low-level image attributes like texture, Classifier-based Retrieval(CR) techniques are ineffective since they categorize the input images and only return images from the determined classes of RS. The issues mentioned earlier cannot be handled by the existing expertise based on a keyword/metadata remote sensing data service model. To get over these restrictions, Fuzzy Class Membership-based Image Extraction (FCMIE), a technology developed for Content-Based Remote Sensing (CBRS), is suggested. The compensation fuzzy neural network (CFNN) is used to calculate the category label and fuzzy category membership of the query image. Use a basic and balanced weighted distance metric. Feature information extraction (FIE) enhances remote sensing image processing and autonomous information retrieval of visual content based on time-frequency meaning, such as color, texture and shape attributes of images. Hierarchical nested structure and cyclic similarity measure produce faster queries when searching. The experiment's findings indicate that applying the proposed model can have favorable outcomes for assessment measures, including Ratio of Coverage, average means precision, recall, and efficiency retrieval that are attained more effectively than the existing CR model. In the areas of feature tracking, climate forecasting, background noise reduction, and simulating nonlinear functional behaviors, CFNN has a wide range of RS applications. The proposed method CFNN-FCMIE achieves a minimum range of 4-5% for all three feature vectors, sample mean and comparison precision-recall ratio, which gives better results than the existing classifier-based retrieval model. This work provides an important reference for medical imaging artificial intelligence system and big data analysis.


Subject(s)
Artificial Intelligence , Remote Sensing Technology , Humans , Data Science , Information Storage and Retrieval , Neural Networks, Computer
18.
Oral Dis ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38623870

ABSTRACT

OBJECTIVES: The splicing factor transformer-2 homolog beta (Tra2ß) plays a pivotal role in various cancers. Nonetheless, its role in oral squamous cell carcinoma (OSCC) has not been comprehensively explored. This study sought to discern the influence of Tra2ß on OSCC and its underlying mechanisms. MATERIALS AND METHODS: We assessed Tra2ß expression in OSCC utilizing immunohistochemistry, qRT-PCR, and western blotting techniques. siRNA transfection was used to silence Tra2ß. Whole transcriptome RNA sequencing (RNA-seq) analysis was carried out to reveal the alternative splicing (AS) events. KEGG pathway analysis enriched the related pathways. Colony formation, transwell, wound healing, and Annexin V-FITC/PI were employed to appraise the consequences of Tra2ß silencing on OSCC. RESULTS: Tra2ß was highly expressed in both OSCC tissues and cell lines. Knockdown of Tra2ß-regulated AS events with skipped exon (SE) accounts for the highest proportion. Meanwhile, downregulation of Tra2ß reduced cell proliferation, migration, and invasion, however increasing cell apoptosis. Moreover, Wnt signaling pathway involved in the function of Tra2ß knockdown which was demonstrated directly by a discernible reduction in the expression of GSK3/ß-catenin signaling axis. CONCLUSIONS: These findings suggest that knockdown of Tra2ß may exert anti-tumor effects through the GSK3/ß-catenin signaling pathway in OSCC.

19.
Molecules ; 29(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38611929

ABSTRACT

The process of extracting polyphyllin II and polyphyllin VII by water-assisted extraction was established and optimized in this study. Response surface methodology was used to establish a prediction model to optimize the extraction conditions. Based on the one-way test, the Box-Behnken design with three factors and three levels was used for the experimental program, and the composition analysis was carried out by high-performance liquid chromatography (HPLC). The optimal extraction conditions for polyphyllin II and polyphyllin VII were as follows: extraction time of 57 and 21 min, extraction temperature of 36 and 32 °C, solid-to-liquid ratio of 1:10 and 1:5 g/mL, respectively, and the yields of polyphyllin II and polyphyllin VII were 1.895 and 5.010%, which was similar to the predicted value of 1.835 and 4.979%. The results of the ANOVA showed that the model fit was good, and the Box-Behnken response surface method could optimize the water-assisted extraction of saponins from the leaves of Paris polyphylla var. yunnanensis. This study provides a theoretical basis for the application of polyphyllin II and polyphyllin VII in pharmaceutical production.


Subject(s)
Liliaceae , Saponins , Chromatography, High Pressure Liquid , Plant Leaves , Water
20.
Zhongguo Zhong Yao Za Zhi ; 49(4): 1044-1051, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621911

ABSTRACT

The animal and cell models were used in this study to investigate the mechanism of Astragali Radix-Curcumae Rhizoma(HQEZ) in inhibiting colon cancer progression and enhancing the efficacy of 5-fluorouracil(5-FU) by regulating hypoxia-inducible factors and tumor stem cells. The animal model was established by subcutaneous transplantation of colon cancer HCT116 cells in nude mice, and 24 successfully modeled mice were randomized into model, 5-FU, HQEZ, and 5-FU+HQEZ groups. The tumor volume was measured every two days. Western blot was employed to measure the protein levels of epidermal growth factor receptor(EGFR), dihydropyrimidine dehydrogenase(DPYD), and thymidylate synthase(TYMS), the key targets of the hypoxic core region, as well as the hypoxia-inducible factors HIF-1α and HIF-2α and the cancer stem cell surface marker CD133 and SRY-box transcription factor 2(SOX2). The results of animal experiments showed that HQEZ slowed down the tumor growth and significantly increased the tumor inhibition rate of 5-FU. Compared with the model group, HQEZ significantly down-regulated the protein levels of EGFR and DPYD, and 5-FU+HQEZ significantly down-regulated the protein levels of EGFR and TYMS in tumors. Compared with the model group, HQEZ significantly down-regulated the protein levels of HIF-1α, HIF-2α, SOX2, and CD133 in the hypoxic core region. Compared with the 5-FU group, 5-FU+HQEZ lowered the protein levels of HIF-1α, HIF-2α, and SOX2. The cell experiments showed that the protein le-vels of HIF-1α and HIF-2α in HCT116 cells elevated significantly after low oxygen treatment. Compared with 5-FU(1.38 µmol·L~(-1)) alone, HQEZ(40 mg·mL~(-1)) and 5-FU+HQEZ significantly down-regulated the protein levels of HIF-1α, HIF-2α, and TYMS. In conclusion, HQEZ can inhibit the expression of hypoxia-responsive molecules in colon cancer cells and reduce the properties of cancer stem cells, thereby enhancing the therapeutic effect of 5-FU on colon cancer.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Colonic Neoplasms , Mice , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Mice, Nude , Fluorouracil/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Hypoxia , ErbB Receptors , Neoplastic Stem Cells , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...