Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Ann N Y Acad Sci ; 1531(1): 29-48, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37965931

ABSTRACT

Faces are among the most important visual stimuli that humans perceive in everyday life. While extensive literature has examined emotional processing and social evaluations of faces, most studies have examined either topic using unimodal approaches. In this review, we promote the use of multimodal cognitive neuroscience approaches to study these processes, using two lines of research as examples: ambiguity in facial expressions of emotion and social trait judgment of faces. In the first set of studies, we identified an event-related potential that signals emotion ambiguity using electroencephalography and we found convergent neural responses to emotion ambiguity using functional neuroimaging and single-neuron recordings. In the second set of studies, we discuss how different neuroimaging and personality-dimensional approaches together provide new insights into social trait judgments of faces. In both sets of studies, we provide an in-depth comparison between neurotypicals and people with autism spectrum disorder. We offer a computational account for the behavioral and neural markers of the different facial processing between the two groups. Finally, we suggest new practices for studying the emotional processing and social evaluations of faces. All data discussed in the case studies of this review are publicly available.


Subject(s)
Autism Spectrum Disorder , Facial Recognition , Humans , Judgment , Emotions/physiology , Electroencephalography , Facial Expression
2.
Inorg Chem ; 62(49): 20506-20512, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37988635

ABSTRACT

Materials with high proton conductivity have attracted significant attention for their wide-ranging applications in proton exchange membrane fuel cells. However, the design of new and efficient porous proton-conducting materials remains a challenging task. The structure-controllable and highly stable metal phosphates can be synthesized into layer or frame networks to provide proton transport capabilities. Herein, we have successfully synthesized three isomorphic metal phosphovanadates, namely, H2(C2H10N2)2[MII(H2O)2(VIVO)8(OH)4(PO4)4(HPO4)4] (C2H8N2 = 1,2-ethylenediamine; M = Co, Ni, and Cu), by the hydrothermal method employing ethylenediamine as a template. These pure inorganic open frameworks exhibit a cavity width ranging from 6.4 to 7.5 Å. Remarkably, the proton conductivity of compounds 1-3 can reach 1 × 10-2 S·cm-1 at 85 °C and 97% relative humidity (RH), and they can remain stable at high temperatures as well as long-term stability. This work provides a novel strategy for the development and design of porous proton-conducting materials.

3.
Sci Data ; 10(1): 773, 2023 11 07.
Article in English | MEDLINE | ID: mdl-37935738

ABSTRACT

Face perception is a fundamental aspect of human social interaction, yet most research on this topic has focused on single modalities and specific aspects of face perception. Here, we present a comprehensive multimodal dataset for examining facial emotion perception and judgment. This dataset includes EEG data from 97 unique neurotypical participants across 8 experiments, fMRI data from 19 neurotypical participants, single-neuron data from 16 neurosurgical patients (22 sessions), eye tracking data from 24 neurotypical participants, behavioral and eye tracking data from 18 participants with ASD and 15 matched controls, and behavioral data from 3 rare patients with focal bilateral amygdala lesions. Notably, participants from all modalities performed the same task. Overall, this multimodal dataset provides a comprehensive exploration of facial emotion perception, emphasizing the importance of integrating multiple modalities to gain a holistic understanding of this complex cognitive process. This dataset serves as a key missing link between human neuroimaging and neurophysiology literature, and facilitates the study of neuropsychiatric populations.


Subject(s)
Facial Recognition , Humans , Amygdala/diagnostic imaging , Emotions/physiology , Facial Recognition/physiology , Judgment , Magnetic Resonance Imaging
4.
Transl Psychiatry ; 13(1): 334, 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37898626

ABSTRACT

Processing facial expressions of emotion draws on a distributed brain network. In particular, judging ambiguous facial emotions involves coordination between multiple brain areas. Here, we applied multimodal functional connectivity analysis to achieve network-level understanding of the neural mechanisms underlying perceptual ambiguity in facial expressions. We found directional effective connectivity between the amygdala, dorsomedial prefrontal cortex (dmPFC), and ventromedial PFC, supporting both bottom-up affective processes for ambiguity representation/perception and top-down cognitive processes for ambiguity resolution/decision. Direct recordings from the human neurosurgical patients showed that the responses of amygdala and dmPFC neurons were modulated by the level of emotion ambiguity, and amygdala neurons responded earlier than dmPFC neurons, reflecting the bottom-up process for ambiguity processing. We further found parietal-frontal coherence and delta-alpha cross-frequency coupling involved in encoding emotion ambiguity. We replicated the EEG coherence result using independent experiments and further showed modulation of the coherence. EEG source connectivity revealed that the dmPFC top-down regulated the activities in other brain regions. Lastly, we showed altered behavioral responses in neuropsychiatric patients who may have dysfunctions in amygdala-PFC functional connectivity. Together, using multimodal experimental and analytical approaches, we have delineated a neural network that underlies processing of emotion ambiguity.


Subject(s)
Emotions , Magnetic Resonance Imaging , Humans , Neural Pathways , Emotions/physiology , Amygdala , Prefrontal Cortex , Brain Mapping , Facial Expression
5.
Molecules ; 28(17)2023 Aug 27.
Article in English | MEDLINE | ID: mdl-37687100

ABSTRACT

Reduced graphene oxide (RGO) has been extensively studied and applied in optoelectronic systems, but its unstable dispersion in organic solvents has limited its application. To overcome this problem, the newly designed and developed aggregation-induced emission (AIE) material poly[(9,9-bis(6-azidohexyl)-9H-fluorene)-alt-(9-(4-(1,2,2-triphenylvinyl)phenyl)-9H-carbazole)] (PAFTC) was covalently grafted onto RGO to produce (PFTC-g-RGO). The solubility of two-dimensional graphene was improved by incorporating it into the backbone of PAFTC to form new functional materials. In resistive random access memory (RRAM) devices, PFTC-g-RGO was used as the active layer material after it was characterized. The fabricated Al/PFTC-g-RGO/ITO device exhibited nonvolatile bistable resistive switching performances with a long retention time of over 104 s, excellent endurance of over 200 switching cycles, and an impressively low turn-ON voltage. This study provides important insights into the future development of AIE polymer-functionalized nanomaterials for information storage.

6.
Neuroimage ; 275: 120170, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37192677

ABSTRACT

Humans adjust their behavioral strategies based on feedback, a process that may depend on intrinsic preferences and contextual factors such as visual salience. In this study, we hypothesized that decision-making based on visual salience is influenced by habitual and goal-directed processes, which can be evidenced by changes in attention and subjective valuation systems. To test this hypothesis, we conducted a series of studies to investigate the behavioral and neural mechanisms underlying visual salience-driven decision-making. We first established the baseline behavioral strategy without salience in Experiment 1 (n = 21). We then highlighted the utility or performance dimension of the chosen outcome using colors in Experiment 2 (n = 30). We demonstrated that the difference in staying frequency increased along the salient dimension, confirming a salience effect. Furthermore, the salience effect was abolished when directional information was removed in Experiment 3 (n = 28), suggesting that the salience effect is feedback-specific. To generalize our findings, we replicated the feedback-specific salience effects using eye-tracking and text emphasis. The fixation differences between the chosen and unchosen values were enhanced along the feedback-specific salient dimension in Experiment 4 (n = 48) but unchanged after removing feedback-specific information in Experiment 5 (n = 32). Moreover, the staying frequency was correlated with fixation properties, confirming that salience guides attention deployment. Lastly, our neuroimaging study (Experiment 6, n = 25) showed that the striatum subregions encoded salience-based outcome evaluation, while the vmPFC encoded salience-based behavioral adjustments. The connectivity of the vmPFC-ventral striatum accounted for individual differences in utility-driven, whereas the vmPFC-dmPFC for performance-driven behavioral adjustments. Together, our results provide a neurocognitive account of how task-irrelevant visual salience drives decision-making by involving attention and the frontal-striatal valuation systems. PUBLIC SIGNIFICANCE STATEMENT: Humans may use the current outcome to make behavior adjustments. How this occurs may depend on stable individual preferences and contextual factors, such as visual salience. Under the hypothesis that visual salience determines attention and subsequently modulates subjective valuation, we investigated the underlying behavioral and neural bases of visual-context-guided outcome evaluation and behavioral adjustments. Our findings suggest that the reward system is orchestrated by visual context and highlight the critical role of attention and the frontal-striatal neural circuit in visual-context-guided decision-making that may involve habitual and goal-directed processes.


Subject(s)
Decision Making , Ventral Striatum , Humans , Attention , Neostriatum , Cognition , Reward
7.
bioRxiv ; 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36747862

ABSTRACT

Processing facial expressions of emotion draws on a distributed brain network. In particular, judging ambiguous facial emotions involves coordination between multiple brain areas. Here, we applied multimodal functional connectivity analysis to achieve network-level understanding of the neural mechanisms underlying perceptual ambiguity in facial expressions. We found directional effective connectivity between the amygdala, dorsomedial prefrontal cortex (dmPFC), and ventromedial PFC, supporting both bottom-up affective processes for ambiguity representation/perception and top-down cognitive processes for ambiguity resolution/decision. Direct recordings from the human neurosurgical patients showed that the responses of amygdala and dmPFC neurons were modulated by the level of emotion ambiguity, and amygdala neurons responded earlier than dmPFC neurons, reflecting the bottom-up process for ambiguity processing. We further found parietal-frontal coherence and delta-alpha cross-frequency coupling involved in encoding emotion ambiguity. We replicated the EEG coherence result using independent experiments and further showed modulation of the coherence. EEG source connectivity revealed that the dmPFC top-down regulated the activities in other brain regions. Lastly, we showed altered behavioral responses in neuropsychiatric patients who may have dysfunctions in amygdala-PFC functional connectivity. Together, using multimodal experimental and analytical approaches, we have delineated a neural network that underlies processing of emotion ambiguity. Significance Statement: A large number of different brain regions participate in emotion processing. However, it remains elusive how these brain regions interact and coordinate with each other and collectively encode emotions, especially when the task requires orchestration between different brain areas. In this study, we employed multimodal approaches that well complemented each other to comprehensively study the neural mechanisms of emotion ambiguity. Our results provided a systematic understanding of the amygdala-PFC network underlying emotion ambiguity with fMRI-based connectivity, EEG coordination of cortical regions, synchronization of brain rhythms, directed information flow of the source signals, and latency of single-neuron responses. Our results further shed light on neuropsychiatric patients who have abnormal amygdala-PFC connectivity.

8.
Sci Rep ; 13(1): 1259, 2023 01 23.
Article in English | MEDLINE | ID: mdl-36690645

ABSTRACT

People judge the nature of human behaviors based on underlying intentions and possible outcomes. Recent studies have demonstrated a causal role of the right temporoparietal junction (rTPJ) in modulating both intention and intention-based outcome evaluations during social judgments. However, these studies mainly used hypothetical scenarios with socially undesirable contexts (bad/neutral intentions and bad/neutral outcomes), leaving the role of rTPJ in judging good intentions and good outcomes unclear. In the current study, participants were instructed to make goodness judgments as a third party toward the monetary allocations from one proposer to another responder. Critically, in some cases, the initial allocation by the proposer could be reversed by the computer, yielding combinations of good/bad intentions (of the proposer) with good/bad outcomes (for the responder). Anodal (n = 20), cathodal (n = 21), and sham (n = 21) transcranial direct current stimulation (tDCS) over the rTPJ were randomly assigned to 62 subjects to further examine the effects of stimulation over the rTPJ in modulating intention-based outcome evaluation. Compared to the anodal and sham stimulations, cathodal tDCS over the rTPJ reduced the goodness ratings of good/bad outcomes when the intentions were good, whereas it showed no significant effect on outcome ratings under unknown and bad intentions. Our results provide the first evidence that deactivating the rTPJ modulates outcome evaluation in an intention-dependent fashion, mainly by reducing the goodness rating towards both good/bad outcomes when the intentions are good. Our findings argue for a causal role of the rTPJ in modulating intention-based social judgments and point to nuanced effects of rTPJ modulation.


Subject(s)
Parietal Lobe , Transcranial Direct Current Stimulation , Humans , Parietal Lobe/physiology , Temporal Lobe/physiology , Intention , Transcranial Direct Current Stimulation/methods , Judgment/physiology
9.
J Autism Dev Disord ; 53(5): 1963-1973, 2023 May.
Article in English | MEDLINE | ID: mdl-35178651

ABSTRACT

People with autism spectrum disorder (ASD) show abnormal face perception and emotion recognition. However, it remains largely unknown whether these differences are associated with abnormal physiological responses when viewing faces. In this study, we employed a sensitive emotion judgment task and conducted a detailed investigation of pupil dilation/constriction and oscillation in high-functioning adult participants with ASD and matched controls. We found that participants with ASD showed normal pupil constriction to faces; however, they demonstrated reduced pupil oscillation, which was independent of stimulus properties and participants' perception of the emotion. Together, our results have revealed an abnormal physiological response to faces in people with ASD, which may in turn be associated with impaired face perception previously found in many studies.


Subject(s)
Autism Spectrum Disorder , Facial Recognition , Adult , Humans , Pupil , Autism Spectrum Disorder/psychology , Judgment , Facial Expression , Emotions/physiology , Facial Recognition/physiology
10.
Inorg Chem ; 61(51): 21024-21034, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36520449

ABSTRACT

Spatially confined assembly of semimetallic oxyanions (AsO33- and SbO33-) within a [H7P8W48O184]33- (P8W48) macrocycle has afforded three nanoscale polyanions, [{AsIII5O4(OH)3}2(P8W48O184)]32- (As10), [(SbIIIOH)4(P8W48O184)]32- (Sb4), and [(SbIIIOH)8(P8W48O184)]24- (Sb8), which were crystallized as the hydrated mixed-cation salts (Me2NH2)13K7Na2Li10[{AsIII5O4(OH)3}2(P8W48O184)]·32H2O (DMA-KNaLi-As10), K20Li12[(SbIIIOH)4(P8W48O184)]·52H2O (KLi-Sb4), and (Me2NH2)8K6Na5Li5[(SbIIIOH)8(P8W48O184)]·65H2O (DMA-KNaLi-Sb8), respectively. A multitude of solid- and solution-state physicochemical techniques were employed to systematically characterize the structure and composition of the as-made compounds. The polyanion of As10 represents the first example of a semimetal-oxo cluster-substituted P8W48 and accommodates the largest AsIII-oxo cluster in polyoxometalates (POMs) reported to date. The number of incorporated SbO33- groups in Sb4 and Sb8 could be customized by a simple variation of SbIII-containing precursors. Encapsulation of semimetallic oxyanions inside P8W48 sets out a valid strategy not only for the development of host-guest assemblies in POM chemistry but also for their function expansion in emerging applications such as proton-conducting materials, for which DMA-KNaLi-As10 showcases an outstanding conductivity of 1.2 × 10-2 S cm-1 at 85 °C and 70% RH.

11.
Neuroimage ; 264: 119731, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36356436

ABSTRACT

When faced with uncertainty, individuals' value-based decisions are influenced by the expected rewards and risks. Understanding how reward and risk are processed and integrated at the behavioral and neural levels is essential for building up utility theories. Using a modified monetary incentive delay task in which the mean of two possible outcomes (expected reward) and the standard deviation (SD) of the possible outcomes (risk) were parametrically manipulated and orthogonalized, we measured eye movements, response times (RTs), and brain activity when participants seek to secure a reward. We found that RTs varied as a function of the mean but not the SD of the potential reward, suggesting that expected rewards are the main driver of RTs. Moreover, the difference between gazes focused on high vs. low value rewards became smaller when the magnitude of the potential reward (mean of possible outcomes) was larger and when risk (SD of possible outcomes) became smaller, highlighting that reward and risk have different effects on attention deployment. Processing the mean reward activated the striatum. The positive striatal connectivity to the amygdala and negative striatal connectivity to the superior frontal gyrus were correlated with individuals' sensitivity to the expected reward. In contrast, processing risk activated the anterior insula. Its positive connectivity to the ventromedial prefrontal cortex and negative connectivity to the anterior midcingulate cortex were correlated with individual differences in risk sensitivity, further suggesting the functional dissociation of reward and risk at the neural level. Our findings, based on several different measures, delineate the distinct representations of reward and risk in non-decision contexts and provide insight into how these utility parameters modulate attention, motivation, and brain networks.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Humans , Reward , Brain/physiology , Motivation
12.
Sci Rep ; 12(1): 18181, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36307488

ABSTRACT

Patients undergoing unilateral orthopedic or neurological rehabilitation have different levels of impairments in the right- or left-dominant hand. However, how handedness and the complexity of the motor task affect motor skill acquisition and its interlimb transfer remains unknown. In the present study, participants performed finger key presses on a numeric keypad at 4 levels of sequence complexities with each hand in a randomized order. Furthermore, they also performed motor sequence practice with the dominant hand to determine its effect on accuracy, reaction time, and movement time. The NASA-TLX at the end of each block of both testing and practice was used to confirm participants' mental workload related to sequence complexity. Both right- and left-handed participants performed the motor sequence task with faster RT when using their right hand. Although participants had increasing RT with increasing sequence complexity, this association was unrelated to handedness. Motor sequence practice produced motor skill acquisition and interlimb transfer indicated by a decreased RT, however, these changes were independent of handedness. Higher sequence complexity was still associated with longer RT after the practice, moreover, both right- and left-handed participants' RT increased with the same magnitude with the increase in sequence complexity. Similar behavioral pattern was observed in MT as in RT. Overall, our RT results may indicate left-hemisphere specialization for motor sequencing tasks, however, neuroimaging studies are needed to support these findings. On the other hand, handedness did not affect motor skill acquisition by the dominant hand or interlimb transfer to the non-dominant hand regardless of task complexity level.


Subject(s)
Functional Laterality , Motor Skills , Humans , Psychomotor Performance , Movement , Reaction Time , Hand
13.
Aesthetic Plast Surg ; 46(4): 1893-1899, 2022 08.
Article in English | MEDLINE | ID: mdl-35146561

ABSTRACT

BACKGROUND: Temporal hollowing is an early sign of aging, and many techniques comprising the injection of fillers into the temporal fossa to correct this hollowing have been described. OBJECTIVE: To assess the safety of a new technique in which stromal vascular fraction gel is used for temporal hollowing. METHODS: Thirty-three patients with temporal hollowing were corrected with the aforementioned gel using deep injection and shallow pave filling at the Department of Plastic and Reconstructive Surgery, Guangdong Women and Children Hospital, China, between January 2017 and April 2021. This gel was injected into the double plane via a needle and cannula by the same cutaneous access points to prevent severe vascular injury. Improvement was evaluated by self-assessment, the Hollowness Severity Rating Scale (grade range, 0-3; lower grades represent minimal hollowness), and a satisfaction survey. RESULTS: Self-assessment questionnaire (6 questions) results were satisfactory; 44 temples (67%) demonstrated more than 2 grades of magnitude of clinical improvement. Thirty-one patients (94%) were satisfied with their outcomes; the complaint ratio was low. CONCLUSION: The high satisfaction rate of patients treated using the stromal vascular fraction gel by deep injection and shallow pave filling suggests that this technique is simple, effective, and safe. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Stromal Vascular Fraction , Cadaver , China , Female , Humans , Injections , Surveys and Questionnaires
14.
Neuroimage ; 236: 118109, 2021 08 01.
Article in English | MEDLINE | ID: mdl-33940147

ABSTRACT

Risk and ambiguity are inherent in virtually all human decision-making. Risk refers to a situation in which we know the precise probability of potential outcomes of each option, whereas ambiguity refers to a situation in which outcome probabilities are not known. A large body of research has shown that individuals prefer known risks to ambiguity, a phenomenon known as ambiguity aversion. One heated debate concerns whether risky and ambiguous decisions rely on the same or distinct neural circuits. In the current meta-analyses, we integrated the results of neuroimaging research on decision-making under risk (n = 69) and ambiguity (n = 31). Our results showed that both processing of risk and ambiguity showed convergence in anterior insula, indicating a key role of anterior insula in encoding uncertainty. Risk additionally engaged dorsomedial prefrontal cortex (dmPFC) and ventral striatum, whereas ambiguity specifically recruited the dorsolateral prefrontal cortex (dlPFC), inferior parietal lobe (IPL) and right anterior insula. Our findings demonstrate overlapping and distinct neural substrates underlying different types of uncertainty, guiding future neuroimaging research on risk-taking and ambiguity aversion.


Subject(s)
Cerebral Cortex/physiology , Decision Making/physiology , Neuroimaging , Reward , Risk-Taking , Uncertainty , Ventral Striatum/physiology , Adolescent , Adult , Cerebral Cortex/diagnostic imaging , Female , Humans , Male , Ventral Striatum/diagnostic imaging , Young Adult
15.
Sci Rep ; 10(1): 14288, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32868828

ABSTRACT

Goal-directed decision making often requires evaluating the outcomes of our decisions, assessing any gains or losses, learning from performance-related feedback, and deciding whether to alter our future decisions. However, it is unclear how these processes can be influenced by the saliency of an outcome (e.g., when one aspect of the outcome is accentuated more than another). Here we investigated whether decision strategies changed when certain aspects of the task outcome (win/loss or correct/incorrect) became more salient and how our brain encoded such saliency signals. We employed a simple two-alternative forced choice gambling task and quantified the frequency at which participants switched decisions to an alternative option in the subsequent trial after receiving feedback on their current selection. We conducted three experiments. In Experiment 1, we established the baseline decision switching behavior: participants switched more frequently following incorrect trials than correct trials, but there was no significant difference between win and loss trials. In Experiment 2, we highlighted the utility (win or loss) or performance (correct or incorrect) dimension of the chosen outcome and we found that the difference in switching frequency was enlarged along the highlighted dimension. However, Experiment 3 showed that when using non-specific saliency emphasis of the outcome, the saliency effect was abolished. We further conducted simultaneous EEG recordings using specific saliency emphasis and found that the feedback-related negativity, P300, and late positive potential could collectively encode saliency modulation of behavioral switching. Lastly, both the frontal and parietal theta-band power encoded the outcome when it was made more salient. Together, our findings suggest that specific outcome saliency can modulate behavioral decision switching between choices and our results have further revealed the neural signatures underlying such saliency modulation. Altering the saliency of an outcome may change how information is weighed during outcome evaluation and thus influence future decisions.


Subject(s)
Decision Making , Electroencephalography , Event-Related Potentials, P300 , Feedback , Female , Gambling/psychology , Humans , Male , Young Adult
16.
Neurosci Lett ; 736: 135243, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32726592

ABSTRACT

Given feedback on the outcomes of our choices, humans can then make adjustments to future decisions. This is how we learn. However, how knowing the outcome of one's decisions influences behavioral changes, and especially the neural basis of those behavioral changes, still remains unclear. To investigate these questions, we employed a simple gambling task, in which participants chose between two alternative cards and received trial-by-trial feedback of their choices. In different sessions, we emphasized either utility (win or loss) or performance (whether the choice was correct [better than the alternative] or incorrect), making one of the two aspects more salient to participants. We found that trial-by-trial feedback and the saliency of the feedback modulated behavioral adjustments and subjective evaluations of the outcomes. With simultaneous electroencephalogram (EEG) recording, we found that the feedback-related negativity (FRN), P300, and late positive potential (LPP) served as the neural substrates for behavioral decision switching. Together, our findings reveal the neural basis of behavioral adjustment based on outcome evaluation and highlight the key role of feedback evaluation in future action selection and flexible adaptation.


Subject(s)
Brain/physiology , Choice Behavior/physiology , Feedback, Psychological/physiology , Electroencephalography , Evoked Potentials , Female , Humans , Male , Young Adult
17.
Med Sci Monit ; 26: e920351, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32108133

ABSTRACT

BACKGROUND This study aimed to use bioinformatics analysis to compare data from tissue microarrays from patients with lung adenocarcinoma (LUAD) and normal lung tissue, and human lung adenocarcinoma cells with normal lung epithelial cells in vitro to investigate the role of synaptotagmin 12 (SYT12) gene expression in LUAD. MATERIAL AND METHODS Human lung adenocarcinoma cell lines (A549, SPC-A-1, H1299, H1975, and PC9) and the normal HBE cell line were compared, and tumor xenografts were developed in mice. The Cancer Genome Atlas (TCGA) tissue microarray data were used to compare SYT12 expression and overall survival (OS). The in vivo and in vitro effects of down-regulation and upregulation of SYT12 were studied using short-interfering RNA (si-RNA) and overexpression plasmids, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway analysis, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and Western blot investigated the molecular mechanisms of SYT12 expression in LUAD. RESULTS SYT12 expression was increased in tissues from patients with LUAD from TCGA and was associated with advanced tumor stage and reduced prognosis. Knockdown of SYT12 suppressed the proliferation and migration of LUAD cells, and upregulation of SYT12 increased the proliferation and migration of LUAD cells in vitro. Phosphorylation of PIK3R3 activated the PI3K/AKT/mTOR pathway. In the mouse xenograft model, expression of SYT12 increased the volume and weight of the xenograft tumors. CONCLUSIONS Bioinformatics analysis, human LUAD cells, and mouse xenograft studies showed that SYT12 acted as a possible oncogene by phosphorylation of PIK3R3 to activate the PI3K/AKT/mTOR signaling pathway.


Subject(s)
Adenocarcinoma of Lung/genetics , Lung Neoplasms/genetics , Synaptotagmins/genetics , Adenocarcinoma of Lung/metabolism , Adenocarcinoma of Lung/pathology , Adult , Aged , Aged, 80 and over , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mice, Nude , MicroRNAs/genetics , Middle Aged , Phosphatidylinositol 3-Kinase/genetics , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Synaptotagmins/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Xenograft Model Antitumor Assays/methods
18.
Nanoscale Adv ; 1(10): 4099-4108, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-36132091

ABSTRACT

OER is the key step to increase the rate of water-splitting reaction. Design and construction of appropriate defects is an effective strategy to enhance catalytic activity. Mn has stronger e--e- repulsion by the local influence of its 3d orbital electrons. When Mn(iii) was successfully introduced into two dimensional F-doped Ni(OH)2, it can tune the surface electronic structure of the F-doped Ni(OH)2 to increase its oxygen deficiency content. In this work, the as-synthesized Mn and F co-doped Ni(OH)2-NF on Ni foam (Mn-F/Ni(OH)2-NF) shows remarkable oxygen evolution performance, exhibiting 233 mV overpotential at 20 mA cm-2, and the Tafel slope is 56.9 mV dec-1 in 1 M KOH. The performance is better than that of the same loading of IrO2 on Ni foam. Density functional theory (DFT) calculations further show that the introduction of oxygen defects can significantly improve the OER catalytic performance of Mn-F/Ni(OH)2-NF.

19.
J Colloid Interface Sci ; 516: 9-15, 2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29408147

ABSTRACT

Porous carbon nanosheets and corresponding heteroatom doped porous carbon nanosheets have shown great potential as active materials for energy conversion and storage in recent years. However, it remains great challenge to prepare such kind of new two-dimensional (2D) polymer nanosheets without using any templates. In this work, thiadiazole-containing expanded heteroazaporphyrinoid was designed as the building blocks for preparation of free-standing N/S-containing polymer nanosheets (PN) without using any templates. Most importantly, such PN can coordinate with transition metal ions to prepare Fe, N, and S containing PN-Fe. By using these PN-Fe as precursors, Fe/N/S co-doped porous carbon nanosheets (PCN-FeNS) can be facilely prepared by direct pyrolysis under inert condition. The N and S contents of PCN-FeNS can reach up to 6.4 at.% and 0.8 at.%, respectively. For proof-of-concept, PCN-FeNS were further used as electrochemical catalysts for oxygen reduction reaction (ORR) in both alkaline and neutral media. Benefiting from the high surface area and rich-doping character, PCN-FeNS exhibited relatively high half-wave potential of down to 0.71 V, via a four-electron transfer mechanism (n = 3.87 at 0.65 V), as well as high diffusion limiting current density (JL = 5.02 mA cm-2), which are comparable to commercial precious metal based electrocatalysts. This study not only offers a new method to prepare conjugated polymer nanosheets, but also provides a new strategy to fabricate Fe/N/S co-doped porous carbon nanosheets for versatile energy-related applications.


Subject(s)
Carbon/chemistry , Electrochemical Techniques/methods , Nanostructures/chemistry , Oxygen/chemistry , Polymers/chemistry , Aza Compounds/chemistry , Catalysis , Cobalt/chemistry , Iron/chemistry , Nitrogen/chemistry , Oxidation-Reduction , Porosity , Pyrolysis , Sulfur/chemistry , Thiadiazoles/chemistry
20.
Psych J ; 7(1): 25-30, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29235253

ABSTRACT

This study examined the factor structure of the Chinese version of the Dysexecutive Questionnaire (DEX) in a large nonclinical sample of college students (n = 1,586). All participants completed the self-report version of the DEX. An exploratory factor analysis was first performed on a sub-sample (randomly split, n = 766) and produced a four-factor model (Volition, Intentionality, Inhibition, and Abstract Problem-Solving), which was similar to previous models reported in Western samples. In addition, a series of confirmatory factor analyses was conducted on the remaining sample (n = 820). The findings suggested that a four-factor solution of the self-report DEX might better explain the latent structure in the present healthy Chinese sample.


Subject(s)
Asian People , Executive Function , Factor Analysis, Statistical , Surveys and Questionnaires , Adolescent , Female , Humans , Male , Neuropsychological Tests , Psychometrics/statistics & numerical data , Self Report
SELECTION OF CITATIONS
SEARCH DETAIL
...